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ABSTRACT
Directly deploying a trained multi-modal classifier to a new envi-
ronment usually leads to poor performance due to the well-known
domain shift problem. Existing multi-modal domain adaptation
methods treated eachmodality equally and optimize the sub-models
of different modalities synchronously. However, as observed in this
paper, the degrees of domain shift in different modalities are usually
diverse. We propose a novel Differentiated Learning framework to
make use of the diversity between multiple modalities for more
effective domain adaptation. Specifically, we model the classifiers
of different modalities as a group of teacher/student sub-models,
and a novel Prototype based Reliability Measurement is presented
to estimate the reliability of the recognition results made by each
sub-model on the target domain. More reliable results are then
picked up as teaching materials for all sub-models in the group.
Considering the diversity of different modalities, each sub-model
performs the Asynchronous Curriculum Learning by choosing the
teaching materials from easy to hard measured by itself. Further-
more, a reliability-aware fusion scheme is proposed to combine
all optimized sub-models to support final decision. Comprehen-
sive experiments based on three multi-modal datasets with differ-
ent learning tasks have been conducted, which show the superior
performance of our model while comparing with state-of-the-art
multi-modal domain adaptation models.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Differentiated learning; Multi-modal analysis; Domain adaptation

ACM Reference Format:
Jianming Lv, Kaijie Liu, and Shengfeng He . 2021. Differentiated Learning
for Multi-Modal Domain Adaptation. In Proceedings of the 29th ACM Inter-
national Conference on Multimedia (MM ’21), October 20–24, 2021, Virtual
Event, China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3474085.3475660

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475660

(a)

Audio-Visual Event EPIC Kitchens
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Figure 1: The domain shift in twomulti-modal cross-domain
scenarios. (a) The event recognition dataset (AVE) [37] with
the image and audio modalities. (b) The action recognition
dataset (EPIC Kitchens) [6] with the image and optical flow
modalities.

Table 1: The accuracy of the classifiers on different modali-
ties when transferring the models from the source domain
to the target domain.

Dataset Modal Source Target Decline

AVE Image 86.62 17.46 ↓ 69.16
Audio 85.79 42.83 ↓ 42.96

EPIC Kitchens RGB 63.32 35.33 ↓ 27.99
Flow 67.54 48.87 ↓ 18.67

1 INTRODUCTION
Recently, multi-modal data mining [27] [2] [35] has gained more
and more attention, which focuses on utilizing multiple modalities
of data to improve the performance of pattern recognition. Different
from the traditional supervised learning on single-modal data, multi-
modal learning on huge amount of unlabeled data is more close to
the real case of human learning, which brings new challenges.

Due to the well-known domain shift problem, directly applying a
trainedmulti-modal classifier to a new environment usually leads to
poor performance. How to make use of the unlabeled multi-modal
data in the target domain to incrementally optimize the model
is called as the multi-modal domain adaptation (MDA) problem,
which is a natural extension of the the traditional single-modal
domain adaptation (SDA) [9]. Compared with SDA, MDA has more
potential to utilize the correlation between different modalities to
enhance the performance.
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Existing MDA methods can be roughly divided into two cate-
gories: Adversarial Learning and Co-training. Specifically, the Ad-
versarial Learning [25, 29] aims to reduce the domain shift by uti-
lizing the Generative Adversarial Networks to extract the domain-
invariant representation of data. Since the idea of adversarial train-
ing to reduce domain shift has been well studied in traditional
single-modal SDA [11, 13, 39], the research of [25, 29] can be viewed
as an extension of these previous works by reducing the domain
shift on each modality. Another way of MDA is the Co-training
[3, 5, 40, 43], which constructs the classifier as a fusion of the sub-
models from different modalities. Each sub-model is treated as a
student model to learn knowledge from the others, which assign
pseudo labels to the samples with the highest posterior probability
and use them to train the student model. In above methods, all
sub-models of different modalities are treated equally, and learn
from the samples in the target domain in the same order without
considering the diversity of different modalities.

However, according to our observation as shown in Fig.1, the
degrees of domain shift in different modalities are usually diverse
in the MDA cases, which lead to the diverse performance of the
sub-models of different modalities in the target domain. Fig.1 (a)
shows an example of the AVE dataset, where the truck image of
source domain is clear and easy to distinguish, but in the target
domain the poor lighting condition makes it difficult to judge. Com-
pared with the image modality, the domain shift of audio is much
smaller. The results in Table 1 further show that the accuracy of the
image modality drops by 69.16% after cross-domain, while the audio
modality only drops by 42.96%. Similar diversity can be observed in
Fig.1 (b) about the EPIC Kitchens dataset, where the domain shift
of the RGB modality is much larger than the Optical Flow. The
results in Table 1 also confirm the diverse domain shift in different
modalities.

This motivates us in following two aspects: 1) If we can accu-
rately measure the reliability of the recognition results of each sub-
model, we can achieve more precise pseudo labels for incremental
learning; 2) Due to the diversity of the abilities of different sub-
models, it is not optimal for all sub-models to learn synchronously.
Just like a learning group of students with different knowledge
levels, making personalized learning plan for each one may be a
more proper way for efficient improvement.

Based on above thinking, we propose a novelDifferentiated Learn-
ing framework for multi-modal domain adaptation, namelyDLMM ,
to organize an asynchronous learning group of the sub-models of
different modalities. Each sub-model contributes to the teaching
materials according to their reliability, which is measured by the
similarity between the testing instance and the prototypes learned
in the training dataset. Meanwhile, each sub-model performs the
Curriculum Learning asynchronously by choosing teaching ma-
terials from easy to hard measured by itself. This is analog to the
human learning principle of teaching students in accordance of
their aptitude. Furthermore, all optimized sub-models are combined
by a reliability-aware fusion scheme to make the final decision. Ex-
periments based on three multi-modality datasets show the superior
performance of this differentiated learning solution.

Main contributions of this paper are as follows:
(1) A novel Differentiated Learning framework is proposed for

multi-modal domain adaptation, which organizes an asynchronous

learning group of the sub-models of different modalities for incre-
mental optimization on unlabeled data.

(2) A novel Prototype based Reliability Measurement is proposed
to estimate the reliability of each transferred sub-model on un-
labeled data in the target domain, and a Reliability-aware Fusion
scheme is proposed to combine the sub-models to make the final
decision. Experiments show that the Prototype based Reliability
Measurement can significantly outperforms existing uncertainty
estimation methods, such as the posterior probability-based [3, 43],
entropy-based [14] and margin sampling methods [33].

(3) Distinct from the traditional synchronous optimization of
all modalities, an Asynchronous Curriculum Learning strategy is
adopted on each sub-model to choose teaching materials in accor-
dance of their aptitude. Experiments on three multi-modal datasets
with different learning tasks are conducted to verify the superior
performance.

2 RELATEDWORK
This section discusses related literatures including domain adapta-
tion, uncertainty estimation, noisy label learning and curriculum
learning.

2.1 Domain Adaptation
Single-modal Domain Adaptation (SDA).Most of the existing
domain adaptation methods are designed for single-modal data, and
can be summarized into three categories. (1) Discrepancy-based ap-
proaches [22, 23, 36]: matching mid-level representations of source
and target domains byminimizing their discrepancy. (2) Adversarial-
based approaches [11, 13, 39]: reducing the difference of the feature
distributions between the source domain and target domain by
introducing the adversarial learning with the domain classifiers.
(3) Self-training-based approaches [31, 38, 44, 45]: selecting the
samples in the target domain with higher confidence and assigning
them with pseudo-labels for incremental training.

Multi-modal Domain Adaptation (MDA). There is no much
research on multi-modal domain adaptation, but it has attracted
more and more attention recently. Most of existing MDA meth-
ods are extended from the original SDA methods, and are roughly
divided into two categories: Adversarial-based methods and Co-
training. (1) Adversarial-based approaches [25, 29]. Different from
the single-modal version in SDA, the extracted features of different
modalities are used at the same time to obfuscate the domain clas-
sifier. In particular, in [25], the multi-modal alignment features
are used as self-supervised signals. (2) Co-training approaches
[3, 5, 40, 43]. In the original Co-training method [3], multi-view
classifiers are applied, and each view improves the performance by
learning the pseudo-labels made by others. The work [5] applies
this method to multi-modal object detection. [43] further improves
Co-training by drawing samples with high prediction probability
without replacement. More recently, [40] introduces the Bayesian
uncertainty as the weight of pseudo-labels in co-training.In above
methods, all sub-models of different modalities are treated equally,
and learn from the samples in the target domain in the same order
without considering the diversity of different modalities.
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Figure 2: The Differentiated Learning framework for multi-modal domain adaptation, which contains four main stages: S1)
Pre-training in the source domain to optimize the classifiers and achieve the prototypes. S2) Reliability Measurement of the
pseudo labels in the target domain based on learnt prototypes, and themost reliable ones are selected as the teachingmaterials.
S3) Asynchronous Learning is performed on each sub-model to learn the teaching materials from easy to hard. S4) Reliability-
aware Fusion is adopted to output the final decision.

2.2 Uncertainty Estimation
Uncertainty estimation aims tomeasure the reliability of themodel’s
decision-making. The most commonly used uncertainty estimation
index is to use the probability value normalized by softmax [42].
However, the normalized probability may offer wrong estimation
when measuring the transferred classifier in a new domain totally
different from the training environment. In this case, the probability
to all classes may be quite low due to the high uncertainty, but the
normalized softmax can still achieve a relatively high score on a
certain class. Another commonly used uncertainty estimation indi-
cators include information entropy-based on posterior probability
[14], interval-based on posterior probability [7], Bayesian uncer-
tainty [17] and so on. Inspired by the prototype network [21, 34],
we use the Gaussian kernel function representation of the similar-
ity between a sample and the prototype of the predicted class as
a measurement of the reliability of model decision. The superior
performance of this reliability measurement will be shown in the
following experiments comparing with other metrics.

2.3 Noisy Label Learning
The noisy label learning [26, 30, 41] is proposed to lower the risk
of learning false pseudo-labels during incremental training on un-
labeled dataset. An effective way to alleviate the damage caused by
incorrect labels is to use label smoothing [44], which can prevent
the model from making overconfident decisions after training. Dif-
ferent from the previous label-smoothing methods which require
to manually set the smoothness in advance, the method proposed
in this paper performs label smoothing based on the reliability
measurement of recognition results.

2.4 Curriculum Learning
The core idea of curriculum learning [1, 16, 19] is that the model
should start learning from simple samples and gradually transition
to difficult samples, which make the training process more stable.
That means the model should give priority to samples with high
confidence in pseudo-labels when training on unlabeled data. Cur-
riculum learning has been proven to be an effective method in the
field of domain adaptation [44, 45] and semi-supervised learning
[24].

3 DIFFERENTIATED LEARNING
Fig 2 shows the overview of our proposed Differentiated Learning
scheme for multi-modal domain adaptation, namelyDLMM.DLMM
is composed of four main steps. Firstly, the Pre-training Stage is
to pre-train the multi-modal sub-models on the source domain on
multi-tasks, including the original supervised classification task and
an attached prototype extraction task to achieve the multi-modal
prototypes of each class. Then in the Prototype based Reliabil-
ity Measurement Stage on the target domain, the reliability of
the prediction results of each sub-model on the unlabeled data is
measured by the similarity with the pre-trained prototypes, and
the most reliable samples with pseudo labels are picked up as teach-
ing materials. Next, in the Asynchronous Learning Stage, each
sub-model asynchronously selects the teaching materials from easy
to hard based on its prediction loss self-adaptively. Finally, in the
Reliability-aware Fusion Stage, the reliability-based weighted
fusion of the multi-modal classifiers is adopted to output the final
decision.

In the following section, we will firstly describe the problem
definition of multi-modal domain adaptation (MDA), and then
detail each stage of the Differentiated Learning scheme.



3.1 Multi-modal Domain Adaptation
The dataset in the source domain can be formulated as a labeled
collection: S = {< 𝑋

(1)
𝑆𝑖

, 𝑋
(2)
𝑆𝑖

, ..., 𝑋
(𝑀)
𝑆𝑖

, 𝑌𝑆𝑖 >}. Here 𝑋
(𝑚)
𝑆𝑖

(1 ≤ 𝑚 ≤
𝑀) indicates the input of the m𝑡ℎ modality of the i𝑡ℎ sample in the
dataset, and 𝑀 indicates the number of modalities. 𝑌𝑆𝑖 indicates
the label of this sample. On the other hand, the unlabeled target
domain is defined as the following collection without labels: T =
{< 𝑋

(1)
𝑇𝑖

, 𝑋
(2)
𝑇𝑖

, ..., 𝑋
(𝑀)
𝑇𝑖

>}, where 𝑋 (𝑚)
𝑇𝑖

(1 ≤ 𝑚 ≤ 𝑀) indicates the
input of the m𝑡ℎ modality of the i𝑡ℎ sample in the target domain.
The Multi-modal Domain Adaptation (MDA) problem is to trans-
fer the model from 𝑆 to 𝑇 , and apply the unlabeled data in 𝑇 to
incrementally optimize the model.

3.2 Pre-training on Source Domain
As shown in Fig. 2, the model is composed of a group of sub-models
corresponding to multiple modalities, and performs a later fusion of
the decision made by all sub-models. To pre-train the models in the
source domain, a multi-task scheme is adopted as shown in Fig. 2.
Besides the original Supervised Classification Task performed
on the classifier𝐺𝑚 (1 ≤ 𝑚 ≤ 𝑀), a new prototypemapper𝑀𝑚 (1 ≤
𝑚 ≤ 𝑀) is attached to themodel for thePrototype LearningTask,
which aims to learn the prototype of each class. The prototype of a
class indicates the typical representation of the samples belonging
to the class in the source domain. For any new sample, the similarity
between the sample and a prototype of a class indicates how close
between the sample and the ones of the class. Thus higher similarity
indicates higher confidence to map the sample to the class, which is
the basic of the Reliability Measurement for the transferred models
proposed in the next section. The detail of above two learning tasks
are given as follows.

SupervisedClassification Task. Each sub-model of a modality
is trained independently for the classification task based on the
labeled multi-modal data in source domain, where the loss is set as:

𝐿𝑚𝐶 =
∑
𝑖

−𝑌𝑆𝑖 log𝜎 (𝐺𝑚 (𝐹𝑚 (𝑋 (𝑚)
𝑆𝑖

))) (1)

where 𝐹𝑚 (1 ≤ 𝑚 ≤ 𝑀) is the feature extractor of the m𝑡ℎ modality.
𝐺𝑚 is the corresponding classifier. 𝜎 is the softmax function. 𝑌𝑆𝑖 is
the one-hot label vector. Cross entropy loss is adopted here for the
classification task.

Prototype Learning Task. It aims to learn the multi-modal
representation vector of each class, namely a prototype. Specifically,
the prototype of the k𝑡ℎ (1 ≤ 𝑘 ≤ 𝐶) class in the m𝑡ℎ (1 ≤ 𝑚 ≤
𝑀) modality is noted as𝑊𝑚

𝑘
, which is initialized randomly and

optimized by the Prototype Learning Task. The similarity between
an input sample 𝑥 and𝑊𝑚

𝑘
is defined as follows:

𝑑 (𝑥,𝑊𝑚
𝑘
) = 𝑒

− ∥𝑀
𝑚 (𝐹𝑚 (𝑥 ) )−𝑊𝑚

𝑘 ∥2
2

𝛾 (2)

It takes a Gaussian kernel transformation on the Euclidean distance
metric to normalize the similarity measurement into the range of
[0, 1], which facilitates the comparison between different modali-
ties. Here𝑀𝑚 is the prototype mapper of the m𝑡ℎ modality, which
project the original feature vector into the prototype space to mea-
sure the similarity with the prototype𝑊𝑚

𝑘
. 𝛾 is a scaling factor.

Based on Eq. (2), the prototypes are learned by minimizing the
following multi-label classification loss by measuring the similarity
between each input sample with the prototype of each class:

𝐿𝑚𝑃 =
∑
𝑖

𝐶∑
𝑘=1

[−𝑌𝑆𝑖,𝑘 log𝑑 (𝑋 (𝑚)
𝑆𝑖

,𝑊𝑚
𝑘
)

− (1 − 𝑌𝑆𝑖,𝑘 ) log(1 − 𝑑 (𝑋 (𝑚)
𝑆𝑖

,𝑊𝑚
𝑘
))]

(3)

Here 𝑌𝑆𝑖,𝑘 is the k𝑡ℎ binary element of the one-hot label vector 𝑌𝑆𝑖 ,
and indicates whether the sample belongs to the k𝑡ℎ class.

As shown in Fig. 2, both the Supervised Classification Task and
Prototype Learning Task are learned simultaneously on the source
domain for each modality. The total loss of each modality is:

𝐿𝑚𝑆 = 𝐿𝑚𝐶 + _𝐿𝑚𝑃 (4)

where _ is the weight to balance these two tasks. By minimizing 𝐿𝑚
𝑆
,

we can achieve the prototypes {𝑊𝑚
𝑘
}, and optimize the parameters

in𝑀𝑚 , 𝐹𝑚 , and 𝐺𝑚 .

3.3 Prototype based Reliability Measurement
When transferring the classifier 𝐺𝑚 to the target domain, we can
use 𝐺𝑚 to predict the pseudo labels of unlabeled data. How to
measure the reliability of the pseudo labels is a critical problem
of domain adaptation. We propose the Prototype based Reliability
Measurement in this section. Specifically, Given a sample 𝑋𝑇𝑖 =

{𝑋𝑚
𝑇𝑖
|1 ≤ 𝑚 ≤ 𝑀} in the target domain, 𝑋𝑚

𝑇𝑖
indicates the input

of the m𝑡ℎ modality. The one-hot pseudo label vector 𝑌𝑚
𝑇𝑖

can be
calculated by 𝐺𝑚 , where the element corresponding to the k̂𝑡ℎ
class with the highest probability output by 𝐺𝑚 is set as one. The
reliability of the pseudo label is measured based on the similarity
between the sample and the prototype of the k̂𝑡ℎ class:

𝑅𝑚𝑇𝑖
= 𝑑 (𝑋𝑚

𝑇𝑖
,𝑊𝑚

𝑘
) (5)

where the function 𝑑 (.) is defined in Eq. (2). The measurement
is based on the similarity between the what you see in the target
domain and what you learned in the source domain. It is more
possible for the classifier to offer reliable prediction when the input
(what you see) is close to the prototype (what you learned) of the
predicted class.

In this way, < 𝑋𝑚
𝑇𝑖
, 𝑌𝑚

𝑇𝑖
, 𝑅𝑚

𝑇𝑖
> (1 ≤ 𝑚 ≤ 𝑀) can be achieved on

each modality. By comparing the reliability of all modalities, the
most reliable modality to predict this sample is:

�̄� = arg max
𝑚

𝑅𝑚𝑇𝑖
(6)

Thus, the most reliable pseudo label for 𝑋𝑇𝑖 is 𝑌𝑇𝑖 = 𝑌�̄�
𝑇𝑖
, and the

corresponding reliability is: 𝑅𝑇𝑖 = 𝑅�̄�
𝑇𝑖
.

Moreover, to reduce the harmful effect caused by the overconfi-
dent pseudo-labels, we further perform the label smoothing pro-
cessing on pseudo-labels as follows:

¤𝑌𝑇𝑖 = 𝑅𝑇𝑖 ∗ 𝑌𝑇𝑖 +
(1 − 𝑅𝑇𝑖 )

𝐶
(7)

where 𝐶 is the number of class. As shown in Fig. 2, after achieving
the pseudo-labels of all samples in the target domain, the most



reliable ones are selected to form the teaching materials for the
subsequent incremental learning:

𝑈𝑅 = {(𝑋𝑇𝑖 , ¤𝑌𝑇𝑖 , 𝑅𝑇𝑖 ) |𝑅𝑇𝑖 > 𝑅_} (8)

𝑅_ is a constant threshold to the filter out the pseudo-labels with
lower reliability. By default, we set 𝑅_ as the top 50% reliability of
the samples in the dataset.

3.4 Asynchronous Learning
After achieving the teaching materials 𝑈𝑅 , the supervised incre-
mental optimization based on pseudo labels can be performed on
the sub-model of each modality. Distinct from traditional synchro-
nous optimization of all modalities, we propose an asynchronous
learning strategy to consider the diversity of the abilities of dif-
ferent sub-models. As shown in Fig. 2, each sub-model performs
the Curriculum Learning [19] to choose the samples for learning
from easy to hard in accordance of their aptitude. Specifically, the
m𝑡ℎ (1 ≤ 𝑚) sub-model is optimized by minimizing the following
loss:

min
𝐹𝑚,𝐺𝑚,𝑣𝑚

𝑖

[𝐿𝑚𝐶 + 𝛽
∑

(𝑋𝑇𝑖
, ¤𝑌𝑇𝑖 ,𝑅𝑇𝑖 ) ∈𝑈𝑅

𝑣𝑚𝑖 (𝐿𝑚𝑇 (𝑋𝑚
𝑇𝑖
) − 𝜏𝑚)] (9)

which utilizes both of the labeled data in the source domain and the
unlabeled data in the target domain. Here 𝐿𝑚

𝐶
is defined in Eq. (1),

which indicates the loss of training the labeled data in the source
domain. 𝑣𝑚

𝑖
∈ {0, 1} is a binary variable to determine whether the

sample 𝑋𝑇𝑖 in the target domain is chosen to learn. 𝐿𝑚
𝑇
(𝑋𝑚

𝑇𝑖
) is the

cross-entropy loss of the sub-model to predict the label of 𝑋𝑚
𝑇𝑖
:

𝐿𝑚𝑇 (𝑋𝑚
𝑇𝑖
) = − ¤𝑌𝑇𝑖 log(𝜎 (𝐺𝑚 (𝐹𝑚 (𝑋𝑚

𝑇𝑖
)))) (10)

where ¤𝑌𝑇𝑖 is the pseudo label of 𝑋𝑇𝑖 defined in Eq. (7). 𝜏𝑚 in Eq. (9)
is the threshold to filter out hard samples. 𝛽 is a constant to balance
the training in the source domain and target domain.

Eq. (9) can be solved by alternating optimization based on the
following steps:
Step A) Sample selection. Fix 𝐹𝑚 , 𝐺𝑚 , and minimize Eq. (9) to
optimize 𝑣𝑚

𝑖
as:

𝑣𝑚𝑖 =

{
1, 𝐿𝑚

𝑇
(𝑋𝑚

𝑇𝑖
) < 𝜏𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

That means the easier samples with the loss 𝐿𝑚
𝑇
(𝑋𝑚

𝑇𝑖
) less than 𝜏𝑚

are chosen for learning. 𝜏𝑚 can be used to control the learning
difficulty.
Step B) Model optimization. Fix 𝑣𝑚

𝑖
, and minimize Eq. (9) to

optimize 𝐹𝑚 and 𝐺𝑚 . Typical gradient descent methods can be
used to perform the optimization.

By iteratively going through Step A and B, the sub-model 𝐺𝑚

can be optimized by choosing the labels according to the loss. Like
the traditional Curriculum Learning [19], we can slowly increase
𝜏𝑚 to learn from easy to hard. For the m𝑡ℎ modality, we rank the
loss 𝐿𝑚

𝑇
(𝑋𝑚

𝑇𝑖
) of the samples in𝑈𝑅 in ascending order, and then set

𝜏𝑚 to the loss of the top 𝑝 ∗ |𝑈𝑅 |, where 𝑝 is the ratio parameter. In
particular, at the beginning we initialize 𝑝 to 5%, and increase it by
5% in each iteration until it reaches 50%.

In this way, every sub-model can make differentiated learning
schedule by choosing teaching materials from easy to hard mea-
sured by itself, which is quite analog to the human learning principle
of teaching students in accordance of their aptitude.

3.5 Reliability-aware Fusion
After the Asynchronous Learning stage, each sub-model 𝐺𝑚 gets
optimized in the target domain. As shown in Fig 2, the fusion of
the prediction results from all sub-models is adopted as the final
decision. As analyzed before, the reliability of each modality can
be calculated by the prototype based measurement according to
Eq. (5), based on which the Reliability-aware Fusion of multi-modal
results can be defined as follows:

¥𝑌𝑇𝑖 =

𝑀∑
𝑚=1

𝑅𝑚
𝑇𝑖
¥𝑌𝑚
𝑇𝑖

𝑀∑
𝑚=1

𝑅𝑚
𝑇𝑖

(12)

Here ¥𝑌𝑇𝑖 indicates the final prediction vector of any sample 𝑋𝑇𝑖 in
the target domain. ¥𝑌𝑚

𝑇𝑖
(1 ≤ 𝑚 ≤ 𝑀) is the prediction vector output

by the sub-model𝐺𝑚 , and 𝑅𝑚
𝑇𝑖

is the reliability of the𝑚𝑡ℎ modality
calculated by Eq. (5) .

4 EXPERIMENTS AND RESULTS
In this section, we first introduce the datasets and experimental
setup in Sec. 4.1 and Sec. 4.2, and then present the results in Sec. 4.3.
The ablation study is given in Sec. 4.4, and the parameter sensitivity
analysis is offered in Sec. 4.5. Finally, the qualitative results are
presented in Sec. 4.6.

4.1 Datasets
We will evaluate the Differentiated Learning framework, namely
DLMM , on three popular tasks: event recognition, fatigue detec-
tion and action recognition. The datasets are detailed as follows:

Event Recognition Dataset (AVE) [37]. The AVE dataset con-
tains two modalities of image and audio, and there are 4,143 videos
covering 28 event categories, where videos are labeled with audio-
visual event boundaries. We divide the dataset into two sub-sets
indicates two different domains. Specifically, the Resnet-50 network
[12] pre-trained on Imagenet [8] is used to extract 1024-dimensional
features of the image of each sample. Then the feature vectors of
each category are clustered into two clusters by the K-Means algo-
rithm [15]. In the end, we obtained 43,458 source domain samples
and 113,829 target domain samples.

FatigueDetectionDataset (CogBeacon) [28]. CogBeacon con-
tains two usable modalities of EEG signal and facial keypoints. It
consists of 76 sessions collected from 19 users performing three
versions of cognitive tasks (namely V1,V2,V3), inspired by the prin-
ciples of the Wisconsin Card Sorting Test. The number of samples
corresponding to the cognitive task V1,V2,V3 are 2,259, 2,221 and
2,389 respectively.

ActionRecognitionDataset (EPICKitchens) [6]. In this dataset,
we adopt the same domain division configuration as the previous
work [25], which contains three domains D1, D2, and D3 in EPIC
Kitchens. Eight types of actions are analyzed, and each sample is
represented as two modal forms of RGB image and Optical Flow.



The number of action segments in the three domains D1, D2, and
D3 are 1978, 3245 and 4871 respectively.

More details about these datasets are presented in our attach-
ment.

4.2 Configuration of Models
In the event recognition task, the Resnet-18 network [12] is used as
the feature extraction 𝐹𝑚 for both image and audiomodal, and input
samples are converted into 512-dimensional features through 𝐹𝑚 .
The classifier 𝐺𝑚 is a single-layer fully connected layer. The proto-
type mapper𝑀𝑚 is implemented by a single-layer fully connected
layer, which maps 512-dimensional features to a 128-dimensional
prototype space.

In the fatigue detection task, the feature extraction 𝐹𝑚 is imple-
mented by three 1D convolutional layers and a single-layer fully
connected layer for both EEG signals and facial keypoints. The
64-dimensional features are extracted after 𝐹𝑚 . The classifier 𝐺𝑚

is a single-layer fully connected layer. The prototype mapper𝑀𝑚

is implemented by one-layer fully connected layer, which maps
64-dimensional features to the 32-dimensional prototype space.

In the action recognition task, similar to previous works [25], the
inflated 3D convolutional architecture (I3D) [4] is used as the feature
extraction 𝐹𝑚 for both modalities, which has the 1024 dimensional
output vector. The classifier 𝐺𝑚 is a single fully connected layer
to predict class labels. The prototype mapper𝑀𝑚 is implemented
by a single fully connected layer, which maps 1024-dimensional
features to 256-dimensional prototype space.

The Adam optimization method [18] with learning rate e-4 is
adopted. And the accuracy of a model is measured by the ratio of
correctly classified samples in the target domain.

4.3 Comparison Results
Baseline Models. To verify the effectiveness of our proposed
framework, the recently developed multi-modal domain adaptation
methods are compared in the experiments. Specifically, Co-training
approaches [3, 43] treat each modality equally, and assign pseudo
labels to the samples with the highest posterior probability and use
them to train the student models. MDANN [29] uses three levels
of multi-modal fusion features to conduct adversarial learning be-
tween the source and target domains.MM-SADA [25] is state-of-the-
art MDA method, which uses the consistency between modalities
as self-supervised constraints and conducts adversarial learning
between the source and target domains to reduce domain shift.

In addition, we also compare with several popular single-modal
domain adaptation methods [10, 20, 22, 32, 45], and applying these
methods on all modalities simultaneously. In particular, MCD [32]
eliminates domain shift through classifier disagreement, and we
adopt multi-modal classification heads here to combine the diver-
gence between multiple modalities following the setting in [25].
DANN [10] confuses the recognition of the source and target do-
mains to achieve feature alignment between domains. CBST [45]
performs self-training based on class balance on each modal to re-
duce domain shift. AdaBN [20] updates batch Normalisation layers
with target domain statistics.MMD [22] uses kernel transformation
to align the features of the source and target domains.

Table 2: Performance comparison on the Event Recognition
Dataset (AVE).

Method Image Audio Fusion
Direct-Transfer 17.46 42.83 43.16
DANN[10] 20.83 44.21 45.78
CBST[45] 21.16 47.61 48.63
MCD[32] 27.15 39.29 40.35
CT[3] 31.52 36.67 37.18
eCT[43] 33.78 36.92 38.71
MDANN[29] - - 43.65
MM-SADA[25] 29.67 48.65 50.13
DLMM-prob 34.17 45.69 46.81
DLMM-entropy 36.88 47.57 48.76
DLMM-margin 36.41 46.82 48.05
DLMM-Seperate 22.83 46.33 47.59
DLMM 42.58 52.37 55.02
Supervised 67.82 79.23 83.15

Variation Models. In order to verify the effectiveness of the
Prototype based Reliability Measurement, which plays a key role
in judging the reliability of different modalities, we also compare
DLMM with some variation models with different measurement.
e.g. DLMM-prob, DLMM-entropy and DLMM-margin respectively
represent the variation models by replacing the Prototype based Re-
liability Measurement with the posterior probability [3, 43], entropy
of the prediction results [14] and margin sampling [33].

In addition, in order to explore the importance of multi-modal
collaboration on generating shared teaching materials according
to the reliability scores of all sub-models, we also compare DLMM
with the variation model DLMM-seperate, where each sub-model
generates the teaching materials individually according to its own
reliability score.

Moreover, to test the performance of the backbone networks,
we test the simplest variation model Direct-Transfer as the lower
bound, which stands for directly migrating the model trained in
the source domain to the target domain without any incremental
optimization. Meanwhile, as the upper bound, we also report the
results of supervised learning (denoted as Supervised) based on the
ground-truth labels. In all abovemodels, the reliability-aware fusion
of the multi-modal classifiers are adopted as the final decision.

Experimental Results. The results of three tasks are shown
in Table 2, 3, and 4 respectively. As shown in Table 2, in event
recognition task, the accuracy of the image modal is much lower
than that of the audio modal when directly transferring from the
source domain to the target domain (Direct-Transfer). It’s because
the domain-shift of the image modal is much more serious than
audio. In this case, treating each modality equally may even bring
side-effect after domain adaptation, as shown in the results of base-
line models in Table 2. In particular, in some models (e.g.MCD [32],
CT [3], eCT [43]), the accuracy of the audio modal is even lower
than before after the incremental learning on the target domain.
Benefit from the reliability measurement of sub-models and the
asynchronous learning, our method achieves much better perfor-
mance than all baselines. It is worth mentioning that our method
not only has the highest joint decision accuracy, but also improves



Table 3: Performance comparison on the Fatigue Detection Dataset (CogBeacon). 𝑉 1,𝑉 2,and 𝑉 3 indicate three domains.

Method V1→V2 V2→V3 V3→V1 Mean
FK EEG Fusion FK EEG Fusion FK EEG Fusion FK EEG Fusion

Direct-Transfer 56.27 59.03 59.31 61.46 63.15 64.09 62.41 65.41 66.41 60.05 62.53 63.27
DANN[10] 57.81 60.12 61.52 63.02 64.87 66.16 64.95 67.77 69.81 61.93 63.31 65.83
CBST[45] 59.61 62.19 63.56 64.05 64.98 66.35 65.82 70.18 71.16 63.16 65.78 67.46
MCD[32] 58.04 61.75 62.83 65.34 66.71 67.65 65.67 69.13 70.25 63.02 65.83 66.91
CT[3] 57.98 60.42 61.93 62.97 64.47 65.13 65.33 67.01 69.34 62.09 63.97 65.47
eCT[43] 58.45 61.23 62.29 62.99 64.50 65.56 65.72 69.51 70.57 62.38 65.08 66.14
MDANN[29] - - 62.45 - - 66.72 - - 69.92 - - 66.36
MM-SADA[25] 58.74 62.83 63.47 65.14 66.57 67.11 67.92 69.72 70.69 63.93 66.37 67.09
DLMM-prob 58.02 61.53 62.53 65.09 66.52 67.14 67.51 69.59 70.28 63.54 65.88 66.65
DLMM-entropy 58.17 61.86 63.07 65.26 67.07 68.32 68.47 71.26 72.47 63.97 66.73 67.95
DLMM-margin 58.06 61.62 62.86 65.37 69.17 68.84 68.36 70.89 72.03 63.93 67.23 67.91
DLMM-Separate 59.77 62.93 64.15 67.28 67.61 69.15 69.82 71.85 72.82 65.62 67.46 68.71
DLMM 59.91 64.82 66.21 67.36 70.02 71.80 70.15 73.67 74.89 65.91 69.50 70.97
Supervised 79.34 85.16 87.34 82.10 85.67 86.59 83.46 87.82 89.12 81.63 86.15 87.68

Table 4: Performance comparison on the Action Recognition Dataset (EPIC Kitchens). 𝐷1,𝐷2,and 𝐷3 indicate three different
domain.

Method D1→D2 D2→D3 D3→D1 Mean
RGB Flow Fusion RGB Flow Fusion RGB Flow Fusion RGB Flow Fusion

Direct-Transfer 36.1 45.6 43.7 33.6 46.0 46.5 36.3 44.2 44.5 35.3 45.3 44.9
AdaBN[20] 44.1 46.5 47.0 44.8 48.3 48.7 41.5 45.0 47.8 43.5 46.6 47.8
MMD[22] 43.7 46.3 46.5 44.5 48.2 48.5 41.7 45.4 48.3 43.3 46.6 47.7
MCD[32] 43.5 46.3 46.4 45.8 50.7 51.0 42.0 45.0 47.9 43.8 47.3 48.4
CT[3] 43.7 46.0 46.1 45.3 50.2 50.7 41.6 44.8 47.3 43.5 47.0 48.0
eCT[43] 43.9 46.2 46.3 45.5 50.2 50.8 41.8 44.9 47.6 43.7 47.1 48.2
MDANN[29] - - 45.7 - - 48.6 - - 48.2 - - 47.5
MM-SADA[25] 45.0 49.0 49.5 46.2 52.1 52.7 42.1 45.7 50.9 44.5 48.9 51.1
DLMM-prob 45.8 48.7 49.2 45.3 50.4 50.8 42.0 45.1 48.7 44.4 48.1 49.6
DLMM-entropy 46.0 48.8 49.6 45.7 51.2 51.6 42.2 45.3 49.3 44.6 48.4 50.2
DLMM-margin 45.6 48.7 49.1 45.3 50.7 51.2 42.1 46.1 49.5 44.3 48.5 49.9
DLMM-Separate 46.2 49.8 50.1 47.1 50.6 51.5 42.2 48.8 51.3 45.2 49.7 51.1
DLMM 48.3 52.0 52.7 49.7 54.6 55.8 46.9 51.3 53.5 48.3 52.6 54.0
Supervised 63.1 67.6 71.7 62.2 68.2 74.0 60.9 62.4 62.8 62.1 66.1 69.5

the accuracy of the image modal far beyond all baselines, showing
the advantage of our framework to optimize the weaker sub-models.

In the fatigue detection and action recognition tasks, we respec-
tively show the accuracy of transferring models among three given
domains in Table 3 and Table 4. In particular, the performance of
Direct-Transfer is not too bad, because of weaker domain-shift than
the previous event recognition task in Table 1. In these cases,DLMM
can still achieve much higher accuracy on each modality than other
models. Due to the page limit, we only show the results of three
configurations of source-target domain pairs. DLMM can achieve
much higher accuracy on each modality than other models.

In addition, the accuracy of the variation models DLMM-prob,
DLMM-entropy and DLMM-margin are significantly higher than
Direct-Transfer in all above tasks, but much lower than our method
DLMM. This shows the Prototype-based Reliability Measurement
adopted in DLMM is a much more effective way to estimate the
reliability of pseudo labels than the traditional methods such as

the posterior probability [3, 43], entropy [14] and margin based
metrics [33]. Besides, the accuracy of DLMM-seperate is signifi-
cantly higher than Direct-Transfer in all tasks, but much lower than
DLMM. This confirms the importance of multi-modal collaboration
on generating shared teaching materials in DLMM to make full use
of complementarity of different modalities.

4.4 Ablation Study
The most important components of DLMM include the Prototype
based Reliability Measurement (Sec. 3.3), the Asynchronous Learning
(Sec. 3.4 ), the Reliability-aware Fusion (Sec. 3.5 ), together with
the Label-smoothing technique adopted in Eq. (7). To analyze the
contribution of these components clearly, we conducted ablation
studies on three datasets and show the results in Table 5. Specifically,
DLMM(RM) indicates the basic model applying the Prototype based
Reliability Measurement to pick out samples for incremental learn-
ing.DLMM(RM+AL) andDLMM(RM+LS) indicate themodels adding
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Figure 3: t-SNE plots of Image and Audio feature distribution in the AVE dataset produced by the baseline models and our
proposed method 𝐷𝐿𝑀𝑀 . The source domain in blue and the target domain is shown in red.
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Figure 4: The accuracy of the 𝐷𝐿𝑀𝑀 model with different configurations of the hyper-parameters 𝛾 , _, and 𝛽 .

the Asynchronous Learning and Label-smoothing respectively. RF
indicates that the Reliability-aware Fusion is used, while the multi-
modal average fusion is used if without RF. DLMM(RM+AL+LS+RF)
is the full model equipped with all components. As shown in
Table 5, the accuracy of DLMM(RM) is significantly higher than
Direct-Transfer, indicating that the reliability measurement can ef-
fectively pick out reliable pseudo-labels for incremental learning.
DLMM(RM+AL) and DLMM(RM+LS) improve the performance fur-
ther through asynchronous learning and label smoothing. And the
accuracy will be higher when using Reliability-aware Fusion. The
full model DLMM(RM+AL+LS+RF) achieves the highest accuracy
by combining all components.

4.5 Parameter Sensitivity Analysis
The sensitivity of the hyper-parameter 𝛾 , _ and 𝛽 applied in𝐷𝐿𝑀𝑀

is tested and the results are shown in Fig. 4. In particular, 𝛾 means
the scale parameter in the distance measurement in the prototype
space. Too large or too small 𝛾 will reduce the accuracy, so we set
𝛾 to 1 in all three tasks according to Fig. 4. It can be also observed
that the change of _, which balances the prototype learning task
and the classification task. And 𝛽 balances the source domain loss
and target domain loss.

4.6 Qualitative Results
In order to demonstrate the effect of DLMM in reducing domain-
shift intuitively, we show the t-SNE visualisation of the feature
vectors learned in the AVE dataset in Fig. 3. Comparing with other
methods, DLMM is more effective to mix the feature vectors from
the source domain and target domain. This proves that the Differ-
entiated Learning is effective to reduce the domain-shift.

Table 5: Ablation study of 𝐷𝐿𝑀𝑀 with different configura-
tions of key components.

Method AVE CogBeacon EPIC Kitchen
Direct-Transfer 43.16 63.27 45.50
DLMM(RM) 49.42 66.79 46.52
DLMM(RM+RF) 49.48 67.19 46.83
DLMM(RM+AL) 51.83 68.48 47.35
DLMM(RM+AL+RF) 52.12 68.70 47.54
DLMM(RM+LS) 52.91 68.89 48.96
DLMM(RM+LS+RF) 53.25 69.18 49.24
DLMM(RM+AL+LS) 54.78 70.16 52.33
DLMM(RM+AL+LS+RF) 55.02 70.32 52.68

5 CONCLUSION
In this paper, we propose a novelDifferentiated Learning framework,
namelyDLMM, for multi-modal domain adaptation. Comprehensive
experiments on three multi-modal learning tasks show that DLMM
can achieve much better performance than state-of-the-art MDA
methods. In future work, we will extend the proposed method on
the datasets with more than two modalities and combining DLMM
with the adversarial learning to further improve the performance.
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