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1 MORE DETAILS ABOUT DATASETS
(Extension of Section 4.1)

Event Recognition Dataset (AVE) [13]. AVE dataset contains
4,143 videos covering 28 event categories, and image modal and au-
dio modal are aligned in time. The AVE dataset covers a wide range
of audio-visual events (e.g., man speaking, dog barking, playing
guitar, and frying food etc.), and each video contains at least one
2s long audio-visual event. We use the division method introduced
in Section 4.1 to gain the source domain and the target domain.
Specifically, the Resnet-50 network [5] pre-trained on Imagenet [3]
is used to extract 1024-dimensional features of the image of each
sample. Then the feature vectors of each category are clustered into
two clusters by the K-Means algorithm [6]. The samples of each
category are divided into the source domain and the target domain
at a ratio of 2:8 according to the distance from their image feature
vectors to the cluster centers. In the end, we obtained 83,458 source
domain samples and 333,829 target domain samples. Examples of
12 different categories of images in the source domain and the tar-
get domain are shown in Fig 2. It can be seen from Fig 2 that the
images in source domain are clearly distinguishable, while images
in target domain are more difficult to distinguish due to the poor
lighting conditions or occlusion. This shows the obvious domain
shift between the source domain and the target domain.

Fatigue Detection Dataset (CogBeacon) [10]. CogBeacon is
a multi-modal dataset designed to research the effects of cognitive
fatigue in human performance. The dataset consists of 76 sessions
collected from 19 male and female users performing different ver-
sions of a cognitive task inspired by the principles of the Wisconsin
Card Sorting Test. During each session, the users’ EEG functionality
and facial keypoints are recorded and labeled. Specifically, each
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Figure 1: Examples of the instances in the domain D1, D2
and D3 in EPIC Kitchens.

user performed three versions (namely V1,V2,V3) of cognitive task
tests. Different versions of cognitive task will produce different
stimuli to users. For example, the EEG signals when facing text-
based stimuli and sound-based stimuli are different [10]. Therefore,
the data collected under different versions of cognitive task can be
regarded as cross-domain data. In this paper, we choose one version
of cognitive task as the source domain, and the other version as
the target domain. The number of samples corresponding to the
cognitive task V1,V2,V3 are 2,259, 2,221 and 2,389 respectively. In
the experiment, we regard one of the domains as the source domain
and the other domain as the target domain. This setting method
can obtain six domain migration combinations.

ActionRecognitionDataset (EPICKitchens) [2]. EPICKitchens
is a multi-modal dataset designed to test domain adaptation for
action recognition. It is recorded in 32 environments and contains
two modal forms of RGB image and Optical Flow. In this paper, we
use the same division method as the previous work [9], considering
the domain adaptation problem among the three domains D1, D2
and D3 in EPIC Kitchens. Some scenes of image and optical flow
modals in the three domains are shown in Fig 1, which reflects the
shift between domains. Eight types of actions are analyzed: (‘put’,
‘take’, ‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’, and ‘pour’). The number
of action segments in the three domains D1, D2, and D3 are 1,978,
3,245 and 4,871 respectively. Even this ensures sufficient examples
per domain and class, EPIC-Kitchens has a large class imbalance
offering additional challenges for domain adaptation. Six domain
migration combinations can be obtained through combining differ-
ent domains.

2 MORE RESULTS OF MIGRATION BETWEEN
DIFFERENT DOMAINS

(Extension of Section 4.3)
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Figure 2: Examples of the images in AVE . (a) Examples in the source domain. (b) Examples in the target domain.

Table 1: Performance comparison on the CogBeacon Dataset. 𝑉 1,𝑉 2,and 𝑉 3 indicate three different domains.

Method V1→V2 V2→V3 V3→V1 Mean
FK EEG Fusion FK EEG Fusion FK EEG Fusion FK EEG Fusion

Direct-Transfer 56.27 59.03 59.31 61.46 63.15 64.09 62.41 65.41 66.41 60.05 62.53 63.27
DANN[4] 57.81 60.12 61.52 63.02 64.87 66.16 64.95 67.77 69.81 61.93 63.31 65.83
CBST[15] 59.61 62.19 63.56 64.05 64.98 66.35 65.82 70.18 71.16 63.16 65.78 67.46
MCD[12] 58.04 61.75 62.83 65.34 66.71 67.65 65.67 69.13 70.25 63.02 65.83 66.91
CT[1] 57.98 60.42 61.93 62.97 64.47 65.13 65.33 67.01 69.34 62.09 63.97 65.47
eCT[14] 58.45 61.23 62.29 62.99 64.50 65.56 65.72 69.51 70.57 62.38 65.08 66.14
MDANN[11] - - 62.45 - - 66.72 - - 69.92 - - 66.36
MM-SADA[9] 58.74 62.83 63.47 65.14 66.57 67.11 67.92 69.72 70.69 63.93 66.37 67.09
DLMM-prob 58.02 61.53 62.53 65.09 66.52 67.14 67.51 69.59 70.28 63.54 65.88 66.65
DLMM-entropy 58.17 61.86 63.07 65.26 67.07 68.32 68.47 71.26 72.47 63.97 66.73 67.95
DLMM-margin 58.06 61.62 62.86 65.37 69.17 68.84 68.36 70.89 72.03 63.93 67.23 67.91
DLMM-Separate 59.77 62.93 64.15 67.28 67.61 69.15 69.82 71.85 72.82 65.62 67.46 68.71
DLMM 59.91 64.82 66.21 67.36 70.02 71.80 70.15 73.67 74.89 65.91 69.50 70.97
Supervised 79.34 85.16 87.34 82.10 85.67 86.59 83.46 87.82 89.12 81.63 86.15 87.68

Method V2→V1 V3→V2 V1→V3 Mean
FK EEG Fusion FK EEG Fusion FK EEG Fusion FK EEG Fusion

Direct-Transfer 60.13 62.55 63.28 61.77 63.21 63.63 62.21 63.75 64.13 61.37 62.92 64.01
DANN[4] 63.02 65.54 66.27 64.32 66.55 67.23 65.49 67.13 68.02 64.28 67.01 67.17
CBST[15] 64.37 66.09 66.63 65.86 67.79 68.81 66.23 67.76 68.45 65.49 67.21 67.96
MCD[12] 63.36 64.76 65.29 65.15 66.33 66.67 65.12 66.34 67.83 64.55 65.81 66.60
CT[1] 63.44 65.13 65.75 65.39 66.54 66.88 65.78 67.12 68.37 64.87 66.26 67.01
eCT[14] 63.51 65.21 66.05 66.02 67.64 68.78 66.31 67.54 68.85 65.28 66.79 67.89
MDANN[11] - - 65.86 - - 67.51 - - 68.53 - - 67.30
MM-SADA[9] 64.65 66.33 67.04 66.17 67.35 68.40 66.56 68.21 69.76 65.79 67.31 68.40
DLMM-p 63.23 65.15 65.87 65.34 66.86 67.68 66.11 67.53 69.41 64.89 66.51 67.65
DLMM-e 64.15 65.65 66.08 65.82 67.08 67.76 66.07 67.47 69.23 65.34 66.73 67.69
DLMM-m 63.34 65.17 65.95 65.55 67.13 67.83 66.34 67.85 69.55 65.07 66.68 67.77
DLMM-separate 64.01 66.34 66.86 66.42 68.27 69.73 67.05 68.01 70.21 65.83 67.54 68.93
DLMM 64.78 67.21 67.63 66.53 68.76 70.24 68.53 69.17 70.13 66.62 68.38 69.67
Supervised 81.12 83.16 85.43 82.54 84.89 86.72 79.72 82.55 84.12 81.13 83.53 85.42

Since there are three domains in both CogBeacon dataset and
EPIC Kitchens dataset, which constitutes six different domain mi-
gration combinations. The results of the three domain migration
combinations have been shown in the main text, and the complete
results of all combinations are shown in Table 1 and Table 2. It can
be observed that DLMM still achieves the highest accuracy among
all indicators, which also confirms our analysis of the advantages
of DLMM in the main text.
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