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Abstract—Most of the existing unsupervised cross-domain
person re-identification (re-ID) methods utilize pseudo-labels
estimation to cast the unsupervised problem into a supervised
problem, whose performance is limited by the quality of pseudo-
labels. To address the problem, we propose a noisy pseudo-
label processing (NPLP) approach to suppress the pseudo-labels
noise and improve the performance of the person re-ID model.
Specifically, we first summarize two types of pseudo-label noise
that lead to the collapse of the re-ID model, as defined as mixed
noise and fragmented noise. Secondly, we propose a different
method which is composed of Startup Stage and Correcting Stage
for pseudo-labels estimation to relieve these two types of noise
respectively. The Startup Stage aims to decrease the ratio of the
fragmented noise by increasing the recall of the clustering results.
At the Correcting Stage, we evaluate the quality of the pseudo-
labels and correct those low-quality pseudo-labels to suppress
the mixed noise and generate more reliable pseudo-labels for
the re-ID model to learn. At last, we build a feature learning
strategy for unsupervised re-ID task and learn from the de-
noised pseudo-labels iteratively. Extensive evaluations on three
large-scale benchmarks show that the NPLP is competitive with
most state-of-the-art unsupervised re-ID methods.

I. INTRODUCTION

Person re-identification aims to retrieve all images of the
target person from the surveillance videos collected from mul-
tiple different cameras. Recently, most person re-ID algorithms
[1]–[3] have achieved impressive performance with large-scale
labeled data. However, obtaining labeled data for person re-
ID is time-consuming and expensive, so that such supervised
methods have limited scalability and usability in real-world
applications. How to effectively learn a model that can extract
discriminative features for person re-ID on massive unlabeled
data has been a challenging problem.

Some methods [4]–[6] have been proposed to tackle the
unsupervised person re-ID problem without any labeled data.
However, their performance is typically poor due to the lack
of supervised signal, and thus being less effective for prac-
tical usage. More recently, many unsupervised cross-domain
methods [7]–[16] have been proposed to utilize not only the
unlabeled data (sampled from target domain) but also the outer
labeled data (sampled from source domain) which could guide
the network to learn from a more plausible distribution.
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Fig. 1. T-SNE visualization of the initial feature embeddings on a part of
DukeMTMC-reID. Points of the same color represent images of the same
identity while points in the same circle means images that share the same
cluster id. There are mainly two types of noise in pseudo-label estimation
based methods: mixed noise (the cluster “1”) and fragmented noise (the cluster
“2” and “3”). The cluster “4” means the samples that can be easily grouped
due to their huge difference with others.

The majority of the above unsupervised cross-domain meth-
ods [7], [9], [13], [15], [16] pre-train the re-ID model with the
labeled source domain data and then adapt the model to the
target domain by learning with pseudo-labels iteratively. They
extract features of unlabeled data using the pre-trained model
and assigned each sample a pseudo-label using unsupervised
clustering methods (e.g., k-means and DBSCAN [17] ). How-
ever, their performance is highly dependent on the quality of
pseudo-label, and the mistake pseudo-labels may lead to the
collapse of the re-ID model.

As shown in Fig 1, there are mainly two types of mis-
takes produced by the pseudo-label estimation procedure, as
defined as mixed noise and fragmented noise respectively.
The mixed noise means assigning the same pseudo-label to
different persons’ images, while the fragmented noise means
splitting a person’s images into different clusters. One reason
for the production of these two types of noises is the intra-
domain image style variations caused by different camera
configurations [10]. Images with a similar appearance in the
same camera may be assigned the same pseudo-label causes
mixed noise. Meanwhile, the same person’s images in different
cameras may be assigned different pseudo-labels, leading to
the generation of fragmented noise.

To relieve these two types of pseudo-label noises, we



propose a noisy pseudo-label processing (NPLP) approach
to improve the performance of unsupervised cross-domain
person re-ID task by generating higher quality pseudo-labels.
Specifically, NPLP is a two-stage method and each stage
suppresses one kind of noise. At the first stage, we suppress
fragmented noise by increasing the probability that the same
person’s images captured by different cameras can be grouped.
After doing so, basically all images of the same person can be
divided into the same cluster, so the fragmented noise can be
suppressed. Though the mixed noise still exists, images with
different pseudo-labels have identifiable characteristics, which
could weakly guide the re-ID model to learn useful knowledge
of the target domain. As shown in Fig.1, the appearance
of images in the cluster “1” are quite different from those
in the cluster “2”, “3” and “4”. Therefore we call the first
stage as Startup Stage. To further relieve the mixed noise,
we propose the Correcting Stage based on a self-assessment
(SA) score to evaluate the quality of each cluster and find
out the noisy clusters. We then further perform pseudo-label
estimation within those noisy clusters with low SA scores
to correct the pseudo-labels. The experiments show that the
performance of the re-ID model boosts significantly with these
two stages running iteratively.

Furthermore, for the unsupervised feature learning, we
introduce a hyper-network (HN) to encode multi-granularities
features to take advantages of discriminative information from
local to global and improve the testing efficiency.

Our contributions are as follows:
• We have summarized two types of pseudo-label noises

in pseudo-label estimation based unsupervised domain
adaptive person re-ID methods, namely, mixed noise and
fragmented noise.

• A noisy pseudo-label processing approach (NPLP) is
proposed to generate high quality pseudo-labels for re-
ID model to learn.

• Extensive experiments are conducted on three large-scale
benchmarks, and the results demonstrate that our simple
and effective method is competitive with most start-
of-the-art unsupervised domain adaptive person re-ID
methods.

II. RELATED WORK

a) Pseudo-Label Based Unsupervised Person re-ID:
Recently, many methods are proposed to tackle unsupervised
person re-ID in a self-training manner [4], [7], [9], [15], [16].
They repeated two steps, assigning pseudo-labels to training
samples and training re-ID model with pseudo-labels until con-
vergence. PUL [7] performs clustering on the unlabeled dataset
and selects samples that are close to the cluster centroids to
train the re-ID model. SSG [9] splits feature map into different
parts and estimates pseudo-labels for each part independently
and then trains the re-ID model iteratively. Meanwhile, BUC
[4] proposes a bottom-up clustering method to group similar
samples into the same identity iteratively. PAST [16] consists
of conservative stage and promoting stage, while the former
aims to improve feature representations, and the latter aims

to explore the global distribution of unlabeled data. However,
the performance of these methods is highly dependent on the
quality of pseudo-labels, and noise in pseudo-labels may lead
to the collapse of the re-ID model. Unfortunately, few methods
consider the problem of pseudo-label noise as far as we know.

b) Deep Learning with Noisy Label: The problem of
label noise has been widely studied in deep learning. Some
methods [18], [19] estimate a noise transition matrix to correct
the noisy labels. Some methods [20]–[22] design noise-robust
loss to learn a noise-robust model. Literatures [23]–[25] try to
filter out noisy labels by training iteratively and then learn
from the clean labels. To the best of our knowledge, few
methods have been proposed to address the problem of label
noise in re-ID. DistributionNet [26] models feature uncertainty
by adding extra embedding network and designs a loss to
allocate uncertainty across training samples unevenly. BUC
[4] makes assumptions about the number of images of each
identity and designs a diversity regularization to avoid pseudo-
label noise to some extent. MMT [27] utilizes auxiliary models
to softly refined the pseudo-labels. Our method analyzes two
types of pseudo-label noise in pseudo-label based methods,
and designs a simple but effective training strategy to generate
high quality pseudo-labels and then learn with them.

c) Part Based Person re-ID: Recent works [1]–[3] have
shown the effectiveness of using multi-granularity features to
construct robust features for supervised person re-ID. Simi-
larly, [9], [14], [16], [28] utilized multi-scale features to tackle
unsupervised person re-ID. [14] leverages similarity between
patches to exploit the part affinity between instances. [9]
estimates pseudo-label for each part independently and trained
the re-ID model with the obtained pseudo-labels. EANet [28]
proposes Part Aligned Pooling and Part Segmentation to en-
hance feature alignment. [16] adopts a similar strategy to [1] to
construct a multi-granularities feature for pseudo-label estima-
tion. However, most of these part based methods concatenate
those features directly, which increase the computing cost at
the testing stage. Meanwhile, concatenating features directly
will also overlook the latent non-linear relationships between
different granularities in feature maps. Our method expolre
the latent non-linear relationships among different features and
improve the testing efficiency by encoding features to a lower
dimension with a hyper-network (HN).

III. METHODOLOGY

Under the setting of unsupervised domain adaptive person
re-ID, we are provided a labeled source dataset {Xs, Ys} that
includes Ns images. Each image xs,i is associated with an
identity ys,i, where yis ∈ {1, 2, ..., Ps}. Ps is the number of
identities in the source training set. In addition, an unlabeled
target dataset Xt that contains Nt images are also provided.
Our goal is to make use of both labeled and unlabeled images
to learn a model that can extract discriminative embeddings
for samples of the target domain.

A. Method Overview
The overview of our noisy pseudo-label processing (NPLP)

is shown in Fig.2. We first pre-train a re-ID model on the
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Fig. 2. Overview of our noisy pseudo-label processing approach (NPLP). SS means the Startup Stage, CS means the Correcting Stage. We first increase the
recall of the clustering results at the Startup Stage to suppress the fragmented noise. At the Correcting Stage, we compute the self-assessment score to evaluate
the quality of each cluster and then perform further clustering among those noisy clusters (e.g. cluster “1” and “2”) to obtain higher quality pseudo-labels.
For the feature learning, we introduce a hyper-network to take advantages of multi-granularities features and improve testing efficiency.

{Xs, Ys} in a supervised manner, and then train the pre-trained
model on Xt with NPLP iteratively. Our approach contains
two key steps, i.e., pseudo-label estimation and unsupervised
part based feature learning. Pseudo-label estimation aims to
address those two types of pseudo-label noises mentioned
above and generate high quality pseudo-labels. The unsuper-
vised part based feature learning utilizes the generated pseudo-
labels to further train the re-ID model. Our method will be
detailed in the following sections.

B. Supervised Pre-training

We utilize Resnet50 [29] pre-trained on ImageNet [30]
as our backbone and pre-train a re-ID model M on source
domain {Xs, Ys}. We employed hard-batch triplet loss [31]
and softmax cross-entropy loss to train our re-ID model on
{Xs, Ys}. The hard-batch triplet loss and the softmax cross-
entropy loss is formulated as follows:

Ltriplet =

P∑
i=1

K∑
a=1

[ max
p=1..K

||xia − xip||2

− min
n=1...K
j=1...P
j 6=i

||xia − xjn||2 + α]
(1)

Lsoftmax = − 1

P ×K

P∑
i=1

K∑
a=1

log
eW

T
i x

i
a∑Ps

c=1 e
WT

k x
i
a

(2)

where P,K represent the number of identities and images
of each identity in a mini-batch respectively. For the hard-
batch triplet loss Ltriplet, xia, x

i
p, x

j
n represent the features

fe extracted from anchor, positive and negative samples of
identity i and j respectively, while α is the margin. For the
softmax cross-entropy loss Lsoftmax, WT

k is the kth identity’s
weights in the last FC layer. The total loss for supervised pre-
training is formulated as:

Lsp = Lsoftmax + Ltriplet (3)

By minimizing Lsp, the re-ID model M can perform well
on the source domain. However, the performance ofM drops
severely on the target domain due to the problem of domain
shift. In the following subsection, we will detail our noisy

pseudo-label processing appraoch (NPLP) to further train the
M with the unlabeled data sampled from the target domain.

C. Pseudo-Label Estimation

We adopt the idea of divide and conquer to suppress the two
types of noises mentioned above to generate proper pseudo-
labels for re-ID model to learn. In particular, we adopt different
pseudo-label estimation strategies to suppress one kind of
noise at each training stages. At the Startup Stage, we suppress
the fragmented noise and make mixed noise dominant. Then,
we filter out those pseudo-labels with mixed noise and further
perform pseudo-label estimation within those noisy clusters to
generate pseudo-labels with higher quality at the Correcting
Stage.

a) Startup Stage: At this stage, we aim to suppress the
ratio of the fragmented noise by increasing the recall of the
clustering results. We choose the most commonly used clus-
tering algorithm, DBSCAN [17] for pseudo-label estimation.
By tuning the maximum distance between neighbors, which is
the most important parameter in DBSCAN [17], we are able
to loose the clustering criterion and increase the probability
of the same person’s images captured by different cameras
owning the same pseudo-label. Therefore, at this stage, the
maximum distance between neighbors εe in DBSCAN [17] is
computed as follows:

εe =
1

αN

αN∑
p=1

S(d(xci,i, xcj ,j)),

∀xci,i, xcj ,j ∈ Xt, i 6= j, ci 6= cj

(4)

where ci means the camera-ID of xci,i and d(xci,i, xcj ,j)
means the feature distance across camera person image pairs.
S(d(xci,i, xcj ,j)) means sorting all d(xci,i, xcj ,j) from lowest
to highest and N is the total number of possible pairs. We
set the average value of top αN as the maximum distance
between neighbors εe for pseudo-label estimation. The εe is
large enough to group most similar pairs and increase the recall
of the clustering results. Therefore, the mixed noise dominates
and the fragmented noise is suppressed. We define the training
set with mixed noise as follows:

Xm
t = {CN1

1 , ..., CNk

k , ..., CNc
c } (5)



Algorithm 1 Noisy Pseudo-Label Processing Approach
Input: labeled source dataset {Xs, Ys}; unlabeled target
dataset Xt; test set Xt,t

1: Train CNN model M(xi, fe) with Xs and Ys.
2: Initialize : N : total iterations , Ie, Ic : number of iterations

at the startup stage and the correcting stage, E : number
of epochs for each iteration.

3: while iteration < N do
4: Extract feature fe for each sample in Xt.
5: Generate pseudo-labels with mixed noise by construct-

ing training set Xm
t .

6: if iteration > Ie then
7: Compute the SA score of each cluster in Xm

t .
8: Construct the low-quality training set Xm,l

t .
9: Perform further clustering among Xm,l

t and construct
the high-quality training set Xc

t

10: end if
11: Construct the lookup table V
12: Train M(xi, fe, fr) with Lel for E epochs
13: end while
14: return the CNN model M(xi, fe)

where CNk

k means that the kth cluster in Xm
t has Nk samples,

and c is the number of clusters. We set the pseudo-label of
each sample in CNk

k as k. As shown in Fig.1, the appearance of
images owning different pseudo-labels is significantly different
and images with different pseudo-labels are easy to identify.
Therefore, pseudo-labels with mixed noise can provide “easy”
knowledge for M to learn and improve its performance on
Xt at this stage.

b) Correcting Stage: As the training progresses, the re-
ID model M can capture the partial distribution of the target
domain and will fit to the mixed noise. Therefore, we change
the training process into the Correcting Stage to filter out those
noisy pseudo-labels and then suppress the mixed noise. At
this stage, we first perform the same pseudo-label estimation
method as described in Startup Stage to obtain the training set
Xm
t with mixed noise. Then, we introduce the self-assesment

score to evaluate the quality of each cluster and operate fine
granularity clustering within those noisy clusters to generate
higher quality pseudo-labels. Firstly, we formulate the intra-
cluster dissimilarity ai and inter-cluster dissimilarity bi of
∀xi ∈ CNk

k as follows:

ai =
1

Nk − 1

Nk∑
j=1
j 6=i

d(xi, xj),∀xj ∈ CNk

k (6)

bi =
1

Nn −Nk

Nn−Nk∑
o=1

d(xi, xo),∀xo /∈ CNk

k (7)

where d(xi, xj) is the euclidean distance of feature fe between
xi, xj . For each xi in CNk

k , the smaller ai and the bigger
bi , the higher probability that xi belongs to the cluster
CNk

k . Taking account of both intra-cluster dissimilarity and

inter-cluster dissimilarity, we can obtain the self-assessment
(SA) score of each cluster in Xm

t by averaging the silhouette
coefficient of samples within the cluster, which is formulated
as follows:

Sk =
1

Nk

Nk∑
i=1

bi − ai
max{ai, bi}

,∀xi ∈ CNk

k (8)

The smaller Sk means the higher probability that CNk

k is a
low-purity cluster. Afterwards, we regard the K clusters with
the lowest self-assesment score in the Xm

t contain a lot of
mixed noise, and construct a set of low-quality clusters Xm,l

t .
The rest of clusters compose an another high-purity cluster set
Xm,h
t . Specifically, we set K = 0.1× c where c is the number

of clusters in Xm
t . Therefore, we can construct a low-quality

cluster set Xm,l
t . Clusters in Xm,l

t have higher probability of
containing images of different person, causing the mixed noise
in pseudo-labels. Hence, we operate fine granularity clustering
within each CNk

k ∈ Xm,l
t to split each CNk

k into several
smaller and purer sub-clusters CNi

k,i . Accordingly, samples
in all new sub-clusters CNi

k,i and high-purity clusters Xm,h
t

construct a training set Xc
t with higher purity. Then the

model is provided purer pseudo-labels to learn. Specifically,
the maximum distance between neighbors for DBSCAN [17]
based pseudo-label estimation at this stage is computed as:

εc = βεe (9)

where εe is the maximum distance between neighbors used at
startup stage, and the β is the attenuation factor. As a result,
we obtain higher quality pseudo-labels to further train the re-
ID model.

D. Feature Learning
We train the model M with the pseudo-labels obtained

by methods described in Sec III-C. As recent part based re-
ID works [1], [2], [9], [16] have shown the effectiveness
of combining multi-granularities features in improving the
performance of person re-ID, we adopt a simple but effective
end-to-end feature learning strategy to make full use of the
discriminative information among different granularities.

a) Pyramidal Average Pooling: As shown in Fig.2, we
first extract the feature maps by M(I) and obtain the 3D
tensor F with the size of C ×H ×W for each image in Xt.
Then, we slice F into I different granularities. In particular,
for ith granularity (i ∈ I), we uniformly split the F into i
stripes, which shape are C× H

i ×W . Then we operate global
average pooling on those stripes and obtain features with var-
ious granularities. We call the above operations as pyramidal
average pooling (PAP), while PAP-I means I granularities we
would utilize.

b) Hyper-Network: To further improve the performance
and the testing efficiency of M on the target domain, we
propose a hyper-network (HN) to explore the potential non-
linear relationships among different features and encode the
concatenate feature fc to a lower dimension but more robust
feature fe for training and testing. Our hyper-network is
composed of a single fully connected (FC) layer.



TABLE I
EFFECTIVENESS OF DIFFERENT TRAINING STAGES AND DIFFERENT PAP-I DESCRIBED IN SEC. III-C AND SEC. III-D RESPECTIVELY. DT: DIRECT

TRANSFER. W/ SS: TRAININGM WITH STARTUP STAGE ONLY. NPLP: TRAININGM WITH OUR WHOLE NPLP. NOTE THAT HYPER-NETWORK SHOWN
IN FIG 2 IS USED IN ALL EXPERIMENTS.

Methods DukeMTMC-reID → Market1501 Market1501 → DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

PAP-1 DT 50.4 67.4 73.8 23.5 26.8 42.4 48.8 13.8

PAP-1 w/ SS 86.8 94.2 96.4 70.6 72.1 82.6 85.6 52.5
NPLP 88.0 94.9 96.5 73.2 77.6 86.4 89.2 61.3

PAP-2 w/ SS 88.7 94.8 96.6 71.8 75.0 84.6 87.5 56.5
NPLP 89.4 95.4 96.8 74.3 77.8 86.6 89.4 61.5

PAP-3 w/ SS 87.2 94.5 96.4 68.4 76.8 86.8 89.4 59.6
NPLP 88.3 94.7 96.6 69.9 78.2 86.9 89.7 60.5

PAP-4 w/ SS 87.5 94.5 96.2 68.8 76.9 87.0 89.6 59.4
NPLP 88.7 94.6 96.6 70.0 78.5 87.0 89.7 61.3

c) Iterative Training: The proposed NPLP approach al-
ternates between estimating pseudo-labels and training the
model M. Specifically, we assign the cluster-ID of each
samples generated by methods described in Sec III-C as
pseudo-label and train M by minimizing total intra-cluster
variance and maximizing the inter-cluster variance using triplet
loss described in III-B and Center Contrastive Loss (CC). The
CC is formulated as:

Lcc = −
1

P ×K

P∑
i=1

K∑
a=1

log
eV

T
i xi

a∑c
j=1 e

V T
j xi

a

(10)

where c is the number of clusters, Vi is the centroid of CNi
i

which is stored in a lookup table V. For each image xia, we
forward the informative feature fe through batch normalization
[32], ReLU [33], and obtain the feature f ir,a. Then we update
the i-th cluster’s centroid using the following form at the stage
of backward-propagation,

Vi = (Vi + f ir,a)/2 (11)

Therefore, our total loss for exploring learning on target data
is formulated as follows:

Lel = Ltriplet + Lcc (12)

The re-ID model M and the quality of clusters can be
refined mutually by updating the parameters of M and the
pseudo-labels iteratively. The training process of our NPLP is
described in algorithm. 1.

IV. EXPERIMENT

A. Datasets and Evaluation Protocol

We evaluate the proposed method on three large-scale
person re-ID benchmarks : Market1501 [34], DukeMTMC-
reID [35], [36], and MSMT17 [37].

a) Market1501: A large scale benchmark that contains
12,936 images of 751 identities for training and 19,732 images
of 750 identities for testing.

b) DukeMTMC-reID: Another large scale benchmark
that is derived from DukeMTMC [35]. It contains 16,522
images of 702 identities for training and 19,889 images of
702 identities for testing.
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Fig. 3. Performance-iteration curve on Market1501 and DukeMTMC-reID.
“SS” means training the model with Startup Stage only while “SS + CS”
means training the model with Startup Stage and Correcting Stage. “d2m”
means using DukeMTMC-reID as source dataset and Market1501 as tar-
get dataset while “m2d” means using Market1501 as source dataset and
DukeMTMC-reID as target dataset.

c) MSMT17: The largest person re-ID benchmark which
contains 126,441 images of 4,101 identities. These images are
captured by 15 cameras during 4 days.

d) Evaluation Protocol: The Cumulative Matching Char-
acteristic (CMC) curve at Rank-1, Rank-5, Rank-10 and mean
Average Precision (mAP) are used to evaluate the performance
of the proposed approach.

B. Implementation Details

We first pre-train a model on the labeled source dataset
following the strategy described in CamStyle [10]. For the
target dataset, we set the mini-batch size as 64, where P are
K are 16 and 4, respectively. Input images are resized to 256×
128. Specifically, we employ random cropping, flipping, and
random erasing [38] strategies for data augmentation. We use
the SGD optimizer and set the learning rate as 1.2 × 10−3.
We train the model for 15 iterations at the Startup Stage and
then change the training process into Correcting Stage for the
rest iterations.

C. Ablation Studies

We conducted ablation studies on Market1501 [34] and
DukeMTMC-reID [35], [36] to analyze the effectiveness of
each component in our NPLP.

a) Effectiveness of the Startup Stage: As shown in Table
I, rows with “w/ SS” are the experiment results of training
re-ID modelM in Startup Stage only. Specifically, the rank-1
accuracy and mAP of “w/ SS” are up to 38.3% and 48.3%
higher than “DT”(direct transfer) respectively when M is
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Fig. 4. T-SNE visualization of the learned feature embeddings training with different stages. In the first row, points of the same color represent images of the
same identity. When we train the re-ID model with Startup Stage and Correcting Stage (subgraph (c)), the decision boundary of those similar images (points
in yellow, red and blue) can be found better than Startup Stage Only (subgraph(b)) and Diret Transfer (subgraph(a)).

tested on Market1501. Similarly, the rank-1 accuracy and
mAP of “w/ SS” are up to 51.1% and 45.8% higher than
“DT” respectively when M is tested on DukeMTMC-reID.
Moreover, as shown in Fig.3(a) and Fig.3(b), the performance
ofM on the target domain increase sharply in the first several
iterations of Startup Stage, and then tends to rise gently. It
infers that though we do not process mixed noise in pseudo-
labels at the Startup Stage, the re-ID model M can still learn
the knowledge of the target domain from the pseudo-labels
and improve the quality of pseudo-labels iteratively. However,
the re-ID model M tends to overfit to those mixed noises in
pseudo-labels in the later iterations of Startup Stage, which
makes its performance on target domain stops increasing.

b) Effectiveness of the Correcting Stage: As shown in
Table I, rows with “NPLP” are the experiment results of
trainingM in Startup Stage and Correctring Stage. The rank-1
accuracy and mAP of “NPLP” are up to 1.2% and 2.6% higher
than “w/ SS” respectively when M is tested on Market1501.
Similarly, the rank-1 accuracy and mAP of “NPLP” exceed
the “w/ SS” by 0.5%-5.5% and 0.9%-8.8% when M is tested
on DukeMTMC-reID. As shown in Fig 3(a) and Fig 3(b),
when the training process is changed into Correcting Stage, the
performance of M on target domain rises more than training
M without Correcting Stage. It proves that our correcting
stage can filter out those noisy pseudo-labels and generate
purer pseudo-labels for M to learn and further improve the
performance of the re-ID model. Moreover, as shown in Fig.4,
when training with Correcting Stage, the decision boundary of
those similar images can be found out, leading to the further
improvement of the model’s performance.

c) Effectiveness of Different PAP-I: As shown in Table I,
we conducted several experiments to evaluate the effectiveness
of the Noise-Reducing Strategy. PAP-i means splitting feature
maps into i granularities, thus PAP-1 is the same as the global
average pooling strategy. Without Correcting Stage, the rank-
1 accuracy and mAP of PAP-I (I > 1) are up to 1.9%
and 1.2% higher than PAP-1 respectively when M is tested

TABLE II
THE EFFECTIVENESS OF HYPER NETWORK DESCRIBED IN III-D. PAP-2:

UTILIZING 2 GRANULARITIES OF FEATURE MAP FOR PYRAMIDAL
AVERAGE POOLING. DC: CONCATENATE PAP-2 FEATURES DIRECTLY.

HN: HYPER-NETWORK.

Methods DukeMTMC-reID → Market1501
Rank-1 Rank-5 Rank-10 mAP

PAP-2 w/DC 87.1 94.9 96.4 68.7
PAP-2 w/HN 88.7 94.8 96.6 71.8

Methods Market1501 → DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP

PAP-2 w/DC 69.3 81.1 84.5 50.3
PAP-2 w/HN 75.0 84.6 87.5 56.5

on Market1501, and are up to 5.8% and 7.1% higher than
PAP-1 respectively when M is tested on DukeMTMC-reID.
Similarly, with NPLP, the rank-1 accuracy and mAP of PAP-I
(I > 1) is up to 1.4% and 1.1% higher than PAP-1 respectively
whenM is on Market1501, and is up to 0.9% and 0.2% higher
than PAP-1 respectively when M is tested on DukeMTMC-
reID.

d) Effectiveness of Hyper-Network: We also explore the
effectiveness of the proposed Hyper-Network and the results
are shown in Table II. The rank-1 accuracy and mAP of
fusing features of different granularities with a Hyper-Network
are 2.3% and 5.6% higher than directly concatenating multi-
granularity features when M is tested on Market1501. Sim-
ilarly, the rank-1 accuracy and mAP of fusing features of
different granularities with a Hyper-Network are 8.5% and
11.2% higher than directly concatenating multi-granularity
features when M is tested on DukeMTMC-reID. This is
because our Hyper-Network can effectively explore the latent
relationships among features of different granularities and
learn a more discriminative feature.

D. Comparison with State-of-the-art Methods

We compare the performance of our approach with state-
of-the-art unsupervised person re-ID methods on Market1501,
DukeMTMC-reID and MSMT17 in Table.III and Table.IV.



TABLE III
COMPARISON OF OUR NPLP WITH STATE-OF-THE-ARTS UNSUPERVISED DOMAIN ADAPTIVE PERSON RE-ID METHODS ON MARKET1501 AND

DUKEMTMC-REID. BOLD INDICATES THE BEST AND UNDERLINED THE RUNNER-UP. ∗ MEANS THE PSEUDO-LABEL BASED METHODS.

Methods Venue DukeMTMC-reID → Market1501 Market1501 → DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

LOMO [39] CVPR15 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8
BOW [34] ICCV15 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3
TJ-AIDL [40] ECCV18 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
CamStyle [10] CVPR18 58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1
PAUL [14] CVPR19 66.7 - - 36.8 56.1 - - 35.7
ECN [12] CVPR19 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4
UDA∗ [15] PR20 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0
PAST∗ [16] ICCV19 78.4 - - 54.6 72.4 - - 54.3
SSG∗ [9] ICCV19 80.0 90.0 92.4 58.3 73.0 80.6 83.2 53.4
MMCL∗ [41] CVPR20 84.4 92.8 95.0 60.4 72.4 82.9 85.0 51.4
AD-Cluster∗ [42] CVPR20 86.7 94.4 96.5 68.3 72.6 82.5 85.5 54.1
MMT∗ [27] ICLR20 87.7 94.9 96.9 71.2 78.0 88.8 92.5 65.1
Ours (NPLP) - 89.4 95.4 96.8 74.3 78.5 87.0 89.7 61.3

TABLE IV
COMPARISON OF THE PROPOSED APPROACH WITH STATE-OF-THE-ART

METHODS ON MSMT17. BOLD INDICATES THE BEST AND UNDERLINED
THE RUNNER-UP.

Methods Market1501 → MSMT17
Rank-1 Rank-5 Rank-10 mAP

PTGAN [37] 10.2 - 24.4 2.9
SSG [9] 31.6 - 49.6 13.2
MMCL [41] 40.8 51.8 56.7 15.1
MMT [27] 49.2 63.1 68.8 22.9
Ours (NPLP) 52.8 64.3 69.5 23.3

Methods DukeMTMC-reID → MSMT17
Rank-1 Rank-5 Rank-10 mAP

PTGAN [37] 11.8 - 27.4 3.3
SSG [9] 32.2 - 51.2 13.3
MMCL [41] 43.6 54.3 58.9 16.2
MMT [27] 50.1 63.9 69.8 23.3
Ours (NPLP) 52.6 64.9 69.6 23.4

We achieve 89.4% rank-1 accuracy and 74.3% mAP on
Market1501 [34], which exceed the pseudo-label estimation
based methods UDA [15], SSG [9], PAST [16], MMCL [41],
AD-Cluster [42] by 2.7%-20% and 6%-36% respectively.
The rank-1 accuracy of NPLP is 78.5% when tested on
DukeMTMC-reID [35], [36]. This is higher than all the other
methods in Table.III. It is worth noting that the SSG [9] utilizes
the multi-granularity features independently and the PAST
[16] concatenate the multi-granularity features directly, which
can not explore the abundant features and robust correlations
between samples effectively. Moreover, our method outper-
forms the best published method MMT [27] when tested on
Market1501 and MSMT17. MMT [27] needs auxiliary models
for training, which increases the training costs. Therefore, our
method is shown to compare favourably with the state-of-the-
art methods.

E. Parameter Analysis

In this section, we analyze the sensitivities of our approach
to two important hyper-parameters α and β that are described
in Eq(4) and Eq(9) respectively. The experiment results are
shown in Fig. 5.
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Fig. 5. The sensitivity of NPLP to α and β that are described in Eq(4)
and Eq(9) respectively. We used DukeMTMC-reID as source domain and
Market1501 as target domain.

a) Parameter α at Startup Stage: In Fig. 5(a), we in-
vestigate the effect of the parameter α at Startup Stage Using
a lower α leads to a lower εe for pseudo-label estimation at
the Startup Stage. Therefore, similar pairs may be grouped
into different clusters, generating more fragmented noise in
pseudo-labels. On the other hand, using a higher α leads to
a higher εe for pseudo-label estimation at the Startup Stage,
generating more mixed noise in pseudo-labels. Due to the large
scale of our datasets and a large number of the cross-camera
image pairs, a small change of α has a discernible impact on
the final performance. The best results are produced when α
is around 0.0012.

b) Parameter β at Correcting Stage: In Fig. 5(b) , we
compare the effect of different β in Eq(9). Using a lower
β leads to a lower εc for further pseudo-label estimation at
the Correcting Stage. Thus, the standard of different images
being grouped into the same cluster will be tighter, leading to
a high probability that similar pairs being assigned different
pseudo-labels. Therefore, fragmented noise in pseudo-labels
will increase. Meanwhile, a higher β produces a higher εc,
leading to a looser standard of different images being grouped
into the same cluster. When β = 1, our method reduces to
training the re-ID model for Startup Stage only. Therefore,
higher β can not handle mixed noise effectively. The best
results are produced when β is around 0.5.



V. CONCLUSION

In this paper, we analyze two types of pseudo-label noises
and their causes in pseudo-label based unsupervised person
re-ID methods. Then, we propose a Noisy Pseudo-Label
Processing (NPLP) approach to relieve these two kinds of
noises base on the idea of divide and conquer. We group
those similar images to suppress the fragmented noise and
train the re-ID model with pseudo-labels that contain mixed
noise at the Startup Stage. Then, we evaluate the quality of
the pseudo labels and then purify those noisy pseudo-labels
at the Correcting Stage and further improve the performance
of the re-ID model. Furthermore, we build a feature learning
strategy for unsupervised re-ID task and learn from the de-
noised pseudo-labels iteratively. Extensive experiments on
three benchmark show that our noisy pseudo-label processing
approach significantly outperforms state-of-the-art unsuper-
vised re-ID models by clear margins.
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