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Abstract—The development of the Industrial Internet will
generate a large amount of valuable data, known as industrial big
data (IBD). By mining and utilizing IBD, enterprises can improve
production efficiency, reduce costs and risks, optimize man-
agement processes, and innovate services and business models.
However, industrial big data comes from various institutions in all
walks of life and has features such as multi-source, heterogeneity,
and multi-modality. And data sharing and trading (DS&T) occur
in the Industrial Internet environment without mutual trust.
These characteristics pose new challenges to analytics methods
and privacy and security protection technologies. Therefore,
this paper aims to provide references for privacy-preserving
and secure industrial big data analytics (IBDA) from three
perspectives: research framework, platform architecture, and key
technologies. Firstly, we review the current state of research on
theories and technologies related to IBDA. Then, we reveal three
challenges to secure and efficient IBDA. We take the analytics and
utilization of IBD as systematic engineering, propose the research
framework for privacy-preserving and secure IBDA, and point
out the specific content to be studied. Further, we design the
architecture of the IBDA platform with the idea of layering,
including a function model, security architecture, and system
architecture. Finally, detailed research proposals and potential
technologies for IBD analytics and utilization are presented from
three aspects: data fusion and analytics, data privacy and security
protection, and blockchain.

Index Terms—Industrial big data (IBD), data analytics, fed-
erated learning (FL), data sharing and trading (DS&T), privacy
and security, blockchain.

I. INTRODUCTION

IN the era of Industry 4.0, the development of the Industrial
Internet has become a common choice for most industrial

powers to cope with future opportunities and challenges [1].
The governments of the United States, China, Japan, and
Germany regard the construction of the Industrial Internet as
a national strategy to develop the real economy and improve
their competitive advantages by deepening the application
of digital technology and promoting digital transformation.
Companies such as Microsoft, Honeywell, Siemens, Alibaba,
and Baidu are speeding up the construction of Industrial
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Internet platforms and promoting service innovation. In 2021,
the added value of the global Industrial Internet industry
reached $3.73 trillion [2]. Through continuous integration with
emerging technologies such as big data, cloud computing,
edge computing, wireless sensing, artificial intelligence, and
blockchain, the Industrial Internet has realized the intercon-
nection of various elements such as devices, products, and ser-
vices. The Industrial Internet will bring innovative application
modes in intelligent manufacturing, healthcare, transportation,
energy, et al.

Industrial big data (IBD) is a term for relevant data sets in
the industrial field and is a core asset of the Industrial Inter-
net. It originates from different sectors of multiple industrial
enterprises in multiple industries and is generated in all pro-
cesses of industrial production. IBD is characterized by ”3V”
of volume, variety, and velocity and ”3M” of multi-source,
multi-dimension, and multi-noise [3]. Data analytics utilizes
methods such as statistics, machine learning, and pattern
recognition to uncover hidden values from massive amounts
of data. This can support the elaboration and intelligent
development of enterprise production, management, research,
service, security, and other activities. IBD value mining can
help enterprises optimize their businesses, improve quality and
efficiency, and promote innovation and transformation. Sharing
IBD among enterprises is valuable for the development of the
industry ecosystem and its social and economic benefits. At
the national level, IBD integration and analytics are significant
for energy conservation, emission reduction, and protecting
critical infrastructure from advanced persistent attacks [4], [5].

The realization of IBD value is based on the assumption that
there will be widespread data sharing and trading (DS&T).
Data sharing is the open usage of data among data owners
within a certain scope in order to collaborate in mining data
value. Data trading refers to the exchange of data between
providers and consumers using currency or monetary equiv-
alents, where data is regarded as a commodity. According to
a survey by the Industrial Internet Industry Alliance (AII),
96% of industrial enterprises have data circulation scenarios,
but 73.4% of them are concerned that the data they provide
will be used for purposes other than those specified in the
contract [6]. IBD is owned by various businesses and may
contain commercial secrets or user private information, cre-
ating serious privacy leakage issues when shared or traded.
The 2022 Cost of Data Breaches Report by IBM Security
and Ponemon Institute reveals that the average cost of data
breaches suffered by critical infrastructure companies such
as energy, transportation, communications, and healthcare is
$4.82 million [7]. About 20% of these breaches are due to the
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compromise of business partners, i.e., supply chain attacks.
Additionally, there are still many security issues to be solved in
data access, transmission, storage, and utilization in the open
and complex environment of the Industrial Internet.

In this paper, we reviewed big data fusion and analytics
methods, data privacy and security protection methods, and
blockchain technology supporting industrial big data analytics
(IBDA). We also proposed a research framework for IBDA
that considers privacy and security protection, and provided
research ideas or technical direction references for IBDA
research and platform construction.

A. Related Work

Scholars have conducted reviews on the relevant aspects of
big data analytics technology and big data privacy and security.

The latest developments in big data analytics tools, methods,
models, and applications, as well as research challenges,
are reviewed in [8, 9]. Some academics have focused on
various aspects of big data analytics in industrial scenarios.
For example, Jagatheesaperumal et al. [10], Khan et al. [11]
and Javaid et al. [12] paid special attention to key applica-
tions, technologies, and challenges. Li et al. [13] introduced
the architecture of the Industrial Internet and discussed key
enabling technologies such as big data, while Bonnard et al.
[14] and Santos et al. [15] presented a big data analytics
architecture for industry 4.0, respectively. Additionally, several
review articles investigated the application status and chal-
lenges of IBDA technologies in different industries, including
manufacturing [16–19], energy [19–23], transportation [24],
construction [25, 26], healthcare [27] and logistics [28].

The privacy and security issues of big data were explored
in [29, 30], which also introduced the latest security tech-
nologies and methods. In [31], the most advanced privacy-
preserving big data analytic techniques were evaluated from
four dimensions: data utility, robustness, complexity, and
efficiency. In [32], various security and privacy solutions
for big data analytics in cloud environments were reviewed
from three perspectives: secure access control, secure data
storage, privacy-preserving learning. A comprehensive survey
on blockchain and big data was provided in [33], which
summarized various blockchain services for big data, including
secure data collection, data storage, data analytics and data
privacy protection. Several review articles specifically covered
the privacy challenges, current solutions and cutting-edge
technologies of big data in agriculture [34] and healthcare [35],
[36].

The aforementioned literature offers a comprehensive re-
view of recent advancements in big data analytics tech-
niques and methods for protecting security and privacy. It
also presents an overview of the applications and challenges
encountered in various industrial contexts. However, these sur-
veys merely summarize relevant technologies and approaches,
without providing specific research content to be examined
from the broader perspective of data analytics and privacy
protection. While several papers address open issues and future
research directions in the field of IBDA, they do not propose
concrete solutions. Furthermore, our findings indicate that no

existing literature provides a framework considering security
and privacy for an IBDA platform. Therefore, the current
body of literature is insufficient to serve as a reference or
guide for research into privacy-preserving and secure IBDA
and platform construction.

B. Contributions

In this work, we begin by conducting a review of IBDA
and security-related technologies. Subsequently, we propose a
research framework for IBDA that incorporates considerations
for privacy and security protection. Finally, we outline the
technical approaches for each component of the framework.
Our main contributions are as follows:

1) We explore the current state of theories and technolo-
gies that are related to the secure and efficient IBDA.
This includes theories on big data fusion and analytics,
methods for data privacy and security protection, and
blockchain technologies for IBDA.

2) We propose a research framework for privacy-preserving
and secure IBDA. We highlight the research con-
tent from four perspectives: platform construction, big
data analytics theory, data privacy and security protec-
tion technology, and blockchain technology supporting
IBDA. The framework is based on the understanding
that the analytics and utilization of IBD are system-
atic processes that require consideration of privacy and
security protection from the design of infrastructure,
the integration of multiple security technologies, and
coordination with big data analytics technology.

3) We suggest a function model, security architecture,
and system architecture for the IBDA platform. These
architectures are designed using a layered approach, tak-
ing into account the platform’s functional requirements
as well as the privacy and security demands at each
stage of IBD collection, storage, analytics, sharing, and
trading. These architectures can serve as a blueprint for
constructing the IBDA platform.

4) We point out the key technologies that support se-
cure and efficient IBDA and suggest research propos-
als and potential technologies. IBDA methods are dis-
cussed from three perspectives: data joint characteriza-
tion, multi-modal fusion analytics, and distributed elastic
computing. Privacy and security protection methods for
IBD are discussed from three perspectives: data sensitive
attribute identification, secure federated learning, and
access control. Blockchain technologies that support
secure and efficient IBD analytics and utilization are
discussed from three perspectives: block structure, con-
sensus algorithms, and smart contracts.

C. Paper Organization

The rest of this paper is organized as follows. Section
II reviews the current state of research on IBD analytics
and security technology. In Section III, a research framework
for privacy-preserving and secure IBDA is proposed, which
includes a platform architecture and three key technologies.
Section IV outlines the IBDA platform architecture. Section V
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discusses the key technologies that enable secure and efficient
IBDA. The paper concludes with a summary in Section VI.

II. A SURVEY

This paper aims to provide guidance and references for
research on privacy-preserving and secure IBDA. According
to the previous analysis, IBD presents new characteristics such
as multi-source, heterogeneity, and multimodality. Privacy
leakage is a critical issue in the process of IBD sharing and
trading among different parties in the open Industrial Internet
environment. Moreover, the lack of mutual trust among data
providers and consumers poses a significant challenge for data
circulation and value creation. The current state of research
on existing big data fusion and analytics methods and data
privacy and security protection approaches, as well as their
applicability in IBD scenarios, requires further investigation.
In addition, blockchain technology, which can address the
mutual trust issues, should also be taken into account.

A. Big Data Fusion and Analytics

1) Data Fusion: In industrial data analytics, integrating
heterogeneous data from multiple sensors can significantly
enhance the stability and reliability of the analytics model.
Multi-modal fusion methods can be classified into three types
based on the stage of data fusion: early fusion, late fusion,
and hybrid fusion.

Early fusion integrates multi-source or multi-modal data
into a single feature vector, which is then used as input for
machine learning (ML) algorithms. Representative methods
include TFN [37] and LMF [38] which are based on matrix
operation. However, these methods have some disadvantages,
such as complex computation and difficulty in extracting high
correlations between modalities at the feature and data layers.

Late fusion, also known as decision-level fusion, involves
training ML models on different modal data and then fusing
the output results of multiple models. Late fusion is widely
used in industry due to its flexibility and independence from
feature extraction. Currently, late fusion primarily employs
rule fusion methods such as maximum fusion, average value
fusion, Bayesian rule fusion, and ensemble learning.

Hybrid fusion combines the advantages of both early and
late fusion, while also increasing the structural complexity and
training difficulty of the model. It is widely used in fields
such as multimedia, visual question answering, and gesture
recognition [39]. Zadeh et al. [40] used a memory fusion
network and a special attention mechanism to simultaneously
capture temporal and inter-modal interactions to obtain better
multi-view fusion features. Mou et al. [41] used an attention-
based convolutional neural network (CNN) and a long short-
term memory (LSTM) network to integrate various in-car
data for driver pressure detection. Lv et al. [42] proposed
a differentiated learning framework that fully utilizes the
diversity between multiple modalities to achieve more effective
cross-modal domain adaptation.

2) distributed computing and approximate computing: Big
data is characterized by its large scale, dynamic changes and
low reliability. In some practical big data applications, it can
be difficult or unnecessary to obtain an optimal solution. As
a result, pursuing approximate results that can be computed
efficiently and meet the requirements is of great importance.
Approximate computing and distributed computing are two
important means to improve the efficiency of big data analyt-
ics.

Approximate computing can be applied at the data, query,
and system levels. Data-level approximation involves trans-
forming big data into smaller data while retainng its main
features, with little or no impact on the accuracy of query
results. This approach can be used for tasks such as shortest
path calculation [43] and link prediction [44]. Query-level
approximation involves transforming high-complexity queries
into low-complexity queries with little or no impact on the
accuracy of query results. This approach can be used for tasks
such as graph pattern matching [45], trajectory simplification
[46], and dense subgraph computation [47]. System-level ap-
proximation is implemented at both the hardware and software
layers [48, 49], including programming languages, compilers,
memory, and processors.

Distributed computing focuses on the division and aggrega-
tion of data and models in a distributed environment, with
the goal of improving analytics efficiency through parallel
computing across multiple working nodes [50]. MapReduce
is a common analysis framework [51] that breaks down
analysis tasks into mapping and reduction processes. Big data
analytics based on MapReduce includes Spark MLlib [52] and
Vowpal Wabbit [53]. Frameworks based on parameter servers
logically separate working nodes from model storage nodes to
support more flexible collaborative working modes. Influential
parameter server systems include CMU’s Petuum [54], and
Google’s DistBelief [55]. Data stream-based distributed com-
puting frameworks describe computing as a directed acyclic
graph, with typical examples including TensorFlow and Py-
torch. These computing frameworks have been widely applied
in IBD scenarios, such as production process monitoring [56]
and traffic flow forecasting [57] based on MapReduce and
Hadoop.

3) Big Data Intelligent Analytics: Big data analytics typ-
ically involves four main tasks: regression, classification,
clustering, and association rule mining (ARM). Regression
is used to predict continuous values and is commonly used
for tasks such as fault detection and quality assessment in
industrial scenarios. Common methods include Support Vec-
tor Regression (SVR) [58], Random Forest (RF) [59], and
Neural Network (NN) [60]. Classification involves predicting
discrete values or mapping data items to different categories.
Classification algorithms such as NN, Support Vector Machine
(SVM), Decision Tree (DT), K-nearest neighbors (KNN), and
Naive Bayes (NB) are widely used in industry [61]. Clustering
is used to determine categories for unlabled data and is widely
applied in scenarios such as pattern recognition [62], yield
analysis [63], quantitative evaluation [64], and equipment sta-
tus diagnosis [65]. Common clustering algorithms in industry
include K-means [62], hierarchical clustering [64], DBSCAN
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[66], and Self Organizing Maps (SOM) [62]. ARM is used to
discover relationships between items in large-scale datasets,
with common algorithms in industry including Apriori, FP
Growth, and Eclat [67].

Data fusion, distributed approximate computing and intel-
ligent analytics have seen rappid development in recent years
and have been applied in IBDA. However, existing research
primarily focuses on data analytics in specific industrial sce-
narios, with a lack of research on the fusion and analytics
of multi-source, heterogeneous, and multi-modal IBD. When
traditional data analytics models are directly applied to in-
dustrial scenarios, the domain adaptation, interpretability, and
generalization ability of the model cannot be guaranteed.

B. Data Privacy and Security Protection

1) privacy protection: Existing privacy protection tech-
nologies include differential privacy (DP), homomorphic en-
cryption (HE), secure multi-party computation (SMPC), and
federated learning (FL).

DP is a method for protecting users’ privacy information
in published data by adding noise to the data. It has strict
definitions and constraints, and aims to completely eliminate
the possibility of privacy leakage from the data source [68]. In
terms of big data privacy protection, Du et al. [69] explored the
problem of differential privacy protection for training models
in wireless big data scenarios, while Zhou et al. [70] focused
on privacy protection methods for online social multimedia
big data.

HE allows calculations to be performed on encrypted data,
with the decrypted results matching those performed on the
plaintext. In terms of big data privacy protection, Li et al.
[71] used HE to solve the security data processing of industrial
internet of things applications, protecting the privacy between
data owners, untrusted cloud servers, and data users. Lu [72]
focused on secure data queries based on HE to achieve privacy
protection in a fog computing environment.

SMPC can ensure that participants’ privacy information is
not exposed in distributed scenarios. It is achieved through
the use of various modern cryptography technologies, such
as garbled circuit, oblivious transfer, secret sharing, HE, zero-
knowledge proofs. Current mainstream computing frameworks
include ABY, SPDZ, PICCO, and Obliv-C [73–75].

FL allows large-scale participants to perform distributed
machine learning or deep learning while keeping data local,
protecting privacy through encrypted parameter exchange [76].
Although FL does not directly expose participants’ training
data, research shows that it is still vulnerable to various privacy
theft attacks. They include model extraction attacks that use
the model service interface to predict specific parameters and
the architecture of the privacy model; model inversion attacks
that reconstruct model input through class tags returned by
the model and confidence coefficients; membership inference
attacks oriented to specific information in the training data
set; and adversarial training attacks targeted at the model
training process [77]. To address these attacks, feasible defense
schemes such as SMPC-based secure aggregation [78], DP-
based privacy training [79], secure training methods based

on trusted execution environment (TEE) [80], and blockchain-
based secure FL architecture [81]. For example, Bonawitz et
al. [78] proposed a secure aggregation model that combines
techniques like secret sharing to prevent the server from
decrypting individual client gradients, thus hiding information
from malicious servers. Approximate DP techniques such as
Bayesian DP and centralized DP can further balance privacy
and model availability [82, 83]. To hide local models and
prevent theft of local model training results by other clients or
servers, users can train their local models in a TEE with cryp-
tographic protection. Kim et al. [84] proposed the BlockFL
architecture, which uses a blockchain system to exchange and
verify local learning model updates, with both local and global
model updates added to the distributed ledger as blocks.

2) Data Security: Data encryption and access control are
two crucial research areas for ensuring the security of indus-
trial big data.

Data encryption: Big data encryption methods mainly in-
clude fully homomorphic encryption (FHE), convergent en-
cryption (CE) and searchable encryption (SE). FHE allows
for additions and multiplications on ciphertext any number of
times, effectively reducing the risk of plaintext being stolen,
intercepted, altered, or forged during transmission [85]. CE
uses the hash value of data to encrypt it, reducing storage
overhead and allowing for deduplication in the encrypted
state [86]. SE enables keyword search on ciphertext without
revealing any useful information about the plaintext [87].

Access control: In the IBD environment, cross-domain
access and collaborative work are two major characteristics.
For distributed big data environments, access control methods
based on the attribute-based encryption (ABE) algorithm have
been proposed in [88], which can provide fine-grained access
control to some extent, but cannot dynamically evaluate the
behavior of access subjects and grant minimum permissions.
Zero-trust theory [89–91] offers a solution to these problems.
Tao et al. [89] proposed a zero-trust-based secure analytics
method for big data that can identify and intercept risky data
access. Zaheer et al. [90] proposed a micro-service security
system guided by zero-trust, emphasizing the use of zero-trust
to improve security on the critical path of data flow. Chen et
al. [91] designed a zero-trust architecture for smart healthcare
platforms to achieve fine-grained access control.

Current privacy protection methods do not effectively bal-
ance the privacy requirements of IBD with model efficiency.
A more efficient and secure privacy protection mechanism is
needed to address privacy attacks and model poisoning attacks
on IBD. Additionally, existing access control mechanisms
cannot meet the needs of fine-grained access control and
dynamic continuous trust evaluation in the complex access
scenarios of the Industrial Internet.

C. Blockchain for IBDA

FL and DS&T are the two key applications of blockchain
in IBDA scenarios. The research results in these two areas can
be summarized as follows.

1) Blockchain for FL: The combination of blockchain
and FL can enable decentralized model aggregation. Multiple
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smart contracts can be used to securely verify and exchange
local model updates. Qu et al. [92] and Unal et al. [93] used
blockchain technology to address data poisoning attacks in FL
systems. Some researchers have also used blockchain to en-
hance the privacy of FL. Jia et al. [94] developed a blockchain-
based FL system to achieve multiple levels of data protection.
Gao et al. [95] proposed a privacy-preserving asynchronous FL
framework based on blockchain, which ensures trustworthiness
by storing local models in the blockchain and generating the
global model using a consensus algorithm.

The blockchain system has helped solve the problem of
insufficient model stability and reliability in the FL process,
while also improving training efficiency. Rehman et al. [96]
proposed the concept of reputation-aware fine-grained FL
based on blockchain, ensuring reliable collaborative training
of data models. Moudoud et al. [97] used a blockchain shard-
ing mechanism to improve blockchain efficiency and enable
parallel model training, and designed a reputation mechanism
based on multi-weight logic to incentivize data model updates.
Kim et al. [98] proposed a local learning weighting method
and a node selection method based on blockchain technology
to improve the stability of FL.

In terms of consensus mechanism research, the latest few
blockchain-based FL systems [99–102] still use basic PoW
or PoS mechanisms. However, Li et al. [103] introduced an
innovative committee consensus mechanism, where a group
of honest nodes form a committee to verify local gradients
and generate blocks. Additionally, Lu et al. [104] developed
a training quality proof (PoQ) mechanism that combines data
model training with consensus processes to better utilize the
computing resources of nodes.

Regarding smart contract research, Rehman et al. [105],
Mugunthan et al. [106], and Zhang et al. [107] developed
smart contracts to maintain the reputation of FL participants
and reward those who provide high-quality data. Martinez
et al. [108] introduced a Class Sampled Verification Error
Scheme, based on smart contracts, to verify and reward
participants for uploading model gradients. Lee et al. [109]
used smart contracts to manage the authentication of FL
participating nodes and the distribution of global or local
models.

2) Blockchain for DS&T: The circulation and application
of industrial data involve issues of data ownership and trans-
actions. Zhao et al. [110] introduced a blockchain-based data
transaction protocol that considers both data availability and
the anonymity of data providers. Dai et al. [111] suggested
transforming traditional data trading platforms’ data host-
ing/exchange services into data processing services, where
only analytics results are accessible to data brokers and buyers.
However, this solution is only applicable to Ethereum and
SGX platforms. Regarding consensus mechanism research,
Cui et al. [112] established a trust model based on vehicle
interaction in the context of Internet of Vehicles (IoV) data
sharing and designed an enhanced Delegated Proof of Stake
(DPoS) consensus algorithm based on the trust model to
balance security and efficiency.

In terms of smart contract research, Hu et al. [113] and
Zheng et al. [114] developed a distributed data transaction

scheme and transaction reward allocation rules based on smart
contracts. Jiang et al. [115] introduced a new data transaction
scheme for the industrial internet of things, consisting of smart
contracts for packet transactions and analysis services. Kang et
al. [116] used smart contacts to design a vehicle data storage
and sharing scheme. For automated analysis, Muchhala et
al. [117] incorporated the MapReduce paradigm into smart
contracts to achieve more secure, effective, and transparent
concurrent data calculation and analytics.

There have been some achievements in blockchain-based
FL and DS&T research. However, existing studies have only
designed blockchain systems for specific application scenarios.
From the perspective of building an IBDA platform, it is
necessary to consider the requirements of both application
scenarios and design a scalable block structure. Additionally,
while some researchers have designed a unique consensus
mechanism for specific needs, most blockchain systems still
use PoW or PoS, which can lead to security and performance
issues in IBDA scenarios.

III. CHALLENGES AND THE RESEARCH FRAMEWORK

A. Challenges

To fully realize the value of IBD, it is necessary to promote
the development of the IBDA platform, create new application
modes, conduct extensive data sharing, and perform deep in-
tegration analytics. However, due to the new characteristics of
IBD and the complexity of the Industrial Internet environment,
secure and efficient IBDA faces the following challenges:

Challenge1: How the data intelligent analytics model fit
into the new characteristics of IBD

IBD is derived from the different production processes
of multiple industrial production enterprises across various
industries. It has distinct characteristics such as being multi-
source, multi-modal, large-scale, spatio-temporally correlated,
and having strong scene differences. Existing IBDA studies
primarily focus on single-scale industrial data analytics within
specific scenarios of individual enterprises. They fall short
of fully revealing the multi-scale correlation characteristics
of multi-source, heterogeneous, and cross-domain IBD that
are prevalent in the Industrial Internet. And they also fail
to fully exploit the fusion effect of multi-source data. The
model’s usability is limited by its lack of domain adaptation,
weak generalization ability in complex and dynamic industrial
scenarios, and lack of interpretability for decision results.

Challenge2: How to analyze and utilize data while
ensuring privacy and security

IBD has intricate ownership, circulation paths, and access
relationships. Sharing and trading data may expose business
secrets or personal privacy. The privacy protection demands
of multi-source IBD vary, requiring IBDA platforms to iden-
tify sensitive attributes and provide hierarchical protection.
FL, a new distributed machine learning paradigm, allows
for multi-party joint modeling without exposing local data,
greatly protecting data privacy. However, issues such as model
privacy attacks, inefficient computing and communication,
and dishonest participants in FL still pose challenges for
data collaborative analytics. Additionally, the platform should
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support fine-grained access control to handle the dynamic
change of trust due to the complex ownership and access
relationships of IBD.

Challenge3: How to share and trade data efficiently in
the Industrial Internet environment without mutual trust

The IBD value is unclear, and relevant data trading standards
are not well-established. This results in enterprises and users
being unable, undaring, or unwilling to share or trade their
data. Poor participation and difficulties in data provenance
and auditing severely hinder DS&T. Blockchain technology
offers a practical solution to these issues. However, to meet
the demands for FL and DS&T, it is necessary to address
the challenges of multi-source heterogeneous data storage and
establish reliable mechanisms for managing the reputation of
data subjects, as well as setting up rewards and penalties.

B. The Research Framework

In the construction of the Industrial Internet, a key issue
is how to effectively analyze and utilize IBD while ensuring
privacy and security. The analytics and utilization of IBD is
a systematic process that requires the design of infrastructure
that takes privacy and security protection into consideration,
the organic integration of different security technologies, and
coordination with big data analytics technologies. This paper
proposes a research framework for privacy-preserving and
secure IBDA, as shown in Fig. 1, which includes four research
directions: the IBDA platform architecture, elastic fusion and
analytics methods of IBD, privacy and security protection
methods of IBD, and blockchain technologies supporting
secure and efficient IBDA. The three objectives correspond
to the three challenges presented in Section III-A. Obj1 is
to develop novel methods for analyzing IBD, taking into
account specific IBD characteristics and environments. Obj2
is to address the security and privacy problems in the process
of big data analysis, focusing on FL and dynamic access
control. The proposed FL framework aims to ensure privacy
preservation in the distributed computing and cross-domain
analysis processes involved in Obj1. Obj3 is to enhance the
mutual trust in DS&T, improve the security of FL involved in
Obj2 using blockchain technology, and uniformly store IBD
features and fusion analysis results obtained in Obj1 using
a scalable block structure. Together, these three objectives
achieve the full exploitation of the combined value of IBD
through DS&T under the premise of ensuring security and
privacy.

1) IBDA Platform Architecture: Firstly, a thorough analyt-
ics of the Industrial Internet big data assets and their attributes
is required. And the requirements of data collection, storage,
analytics, sharing, and trading processes need to be considered
to build the function model of the IBDA platform. Then,
the security architecture and system architecture of the IBDA
platform can be built by analyzing the privacy and security
protection demands throughout the entire IBD lifecycle and
integrating a variety of security and privacy technologies.

2) IBD Fusion and Analytics Methods: In terms of data
representation, the joint representation method of multi-source
data based on the multi-scale heterogeneous graph model

can be studied to provide basic support for data fusion and
intelligent analytics, aiming at the spatio-temporal correlation
features of IBD. In terms of fusion analytics, the multi-modal
fusion analytics model based on reliability measurement, dif-
ferentiated learning, and the self-inductive learning framework
needs to be studied to improve the domain adaptation and
interpretability of IBDA. In terms of computing, the distributed
elastic computing method for IBDA needs to be researched to
support the elastic expansion of data, tasks, and models.

3) IBD Privacy and Security Protection Methods: Firstly, in
light of the various sensitivity levels of IBD, the identification
methods of sensitive attributes need to be studied. Then, to
address the issues of model privacy attacks and dishonest
clients, a secure FL framework enhanced by blockchain and
TEE must be researched to support the training of the IBD
intelligent analytics model with distributed and privacy protec-
tion. Finally, to address the issues of multiple access subjects
and complex interaction scenarios in the Industrial Internet, the
dynamic trust evaluation technology of access subjects can be
studied using zero-trust theory. A hybrid role-attribute access
control model based on trust evaluation needs to be proposed.

4) Blockchain Supporting Secure and Efficient IBDA:
Firstly, a demand analysis for blockchain technology in IBD
applications is required, and a scalable block structure sup-
porting data storage and retrieval in key application scenarios
needs to be studied. Then, to meet the specific characteristics
and requirements of secure FL and DS&T, the reputation proof
consensus algorithm and the hybrid consensus algorithm with
high throughput and low cost need to be studied, respectively.
Finally, multiple smart contracts needs to be studied to meet
the security and efficiency requirements of various applications
in the IBDA platform.

IV. IBDA PLATFORM ARCHITECTURE

In this section, the function model, security architecture and
system architecture of the IBDA platform are proposed.

A. Function Model

IBD encompasses data from the entire industrial production
life cycle, including enterprise informatization data, indus-
trial internet of things data, and external cross-domain data.
Common IBD assets are listed in Table I. IBD is dispersed
across various stages of industrial production, originating from
different systems and even different enterprises. Its potential
value can be explored through sharing and trading. With
extensive sharing and trading, IBDA can help enterprises make
better decisions, gain deeper insights into customer behavior
and preferences, and maintain competitive advantages in a
fierce market environment. Therefore, we propose a function
model for the IBDA platform, as shown in Fig. 2. This model
is divided into application layer, data processing layer, cloud
infrastructure layer, and data access layer, covering multiple
industries such as energy, transportation, healthcare, chemical,
and manufacturing.

1) The data access layer provides functions such as data
access, data preprocessing, data classification, and data prove-
nance. Firstly, the data access function supports the IBDA
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Fig. 1. Research framework for privacy-preserving and secure IBDA.

TABLE I
COMMON IBD ASSETS

Category Type Typical source Data structure Real-time

enterprise informatization data

design data product model
drawing document

semi-structured/non-structured no

value chain management data SCM
CRM

structured/semi-structured no

resource management data ERP/OA
MES
PLM
warehouse management system
energy management system

structured no

IIoT data

ICS data DCS
PLC

structured yes

production monitoring data SCADA structured yes/no

sensor data external sensor
barcode
RFID

structured yes

other external device data camera
microphone

non-structured yes

external cross-domain data external data related industry data
regulation
market data
financial data
logistics data
environmental data

non-structured no

platform in accessing data from the industrial internet of
things, enterprise informatization systems, and external cross-
domain systems. Secondly, the data preprocessing function
offers capabilities such as data cleaning, conversion, and in-

tegration to preprocess the original IBD, eliminating incorrect
and duplicate data to improve its effectiveness. Thirdly, the
data classification function provides differentiated protection
and management for data of various types, security levels,
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Fig. 2. Function model for the IBDA platform.

and privacy protection levels. Fourthly, the function of data
provenance supports data accountability and authenticity ver-
ification.

2) The infrastructure layer offers infrastructure for data
analytics, sharing, and trading. This includes resources for
distributed computing, distributed storage, networks, and vir-
tualization.

3) The data processing layer provides functions such as data
modeling, data analytics, and data service. Digital models such
as users, equipment, products, production lines, factories, and
processes are established based on the strong mechanism of
industrial data. The data processing layer offers approaches
such as multi-source data joint representation, multi-modal
data fusion, FL model training, and approximate computing.
Big data and artificial intelligence technologies are used to
deeply mine and analyze the potential value of IBD. This layer
also integrates data services such as data visualization, data
sharing, and data trading.

4) The application layer provides traditional types of big
data applications such as descriptive analysis, diagnostic anal-
ysis, predictive analysis, control analysis, and decision analy-
sis. In addition, it also includes innovative big data applications
that support enterprise- and industrial-level comprehensive
situational awareness, intelligent service, intelligent design,
intelligent production, networked collaborative manufacturing,
and personalized customization.

B. Security Architecture

The analytics and utilization of IBD includes five processes:
collection, storage, analytics, sharing, and trading. The security
and privacy of data must be ensured in each process to
realize the data security and privacy protection of the entire
IBDA platform. Fig. 3 summarizes the security and privacy

protection requirements for the entire process of IBD analytics
and utilization.

We propose a security architecture for the IBDA platform,
as shown in Fig. 4. The architecture consists of four layers:
data collection, data storage, data analytics, and data ser-
vice. Each layer addresses the security and privacy protection
requirements of the corresponding processes in Fig. 3.

1) The data collection layer ensures that the data owner is
informed and consented to the data collection behavior, and
performs autonomous collection based on the minimization
principle declared in the privacy policies provided by the re-
questing party. Data anonymity and desensitization techniques
are applied to protect basic privacy information. Data prove-
nance techniques guarantee the authenticity and traceability of
data by recording data collection logs, including data sources,
collection times, and data summaries.

2) The data storage layer employs data encryption, disaster
recovery and backup, and data security audit measures to
ensure the confidentiality, integrity, reliability, and availability
of data. Data should be classified and stored according to
factors such as data security level, privacy level, importance,
and frequency of use.

3) The data analytics layer first needs to verify the compli-
ance of the analytics task, including verifying whether the data
source, analytics purpose, and analytics logic are legitimate,
whether privacy data is involved, whether the analytics results
are consistent with the statement, and whether the use of the
analytics results is compliant. Then, the data analytics layer
provides a secure FL framework, combining blockchain, TEE,
DP, and SMPC technologies to realize privacy-preserving data
analytics. The data analytics process is recorded in the form
of a log.

4) The data service layer involves security measures for data
sharing and trading. Sensitive attribute identification technique
is applied to analyze the attribute sets that may compromise
privacy in order to support the settings of classified access
policies. The security audit of data sharing/trading verifies the
legality and compliance of data users’ requests, and enforces
the minimization principle during data sharing. Blockchain is
utilized to track and record data flow information, including
logs of data sharing and trading, thereby supporting trace-
ability and trade supervision. Access control follows a zero-
trust concept, dynamically adjusting the authority of data users
through trust evaluation of the subjects and risk assessment of
their behavior in sharing or trading data. Security protocols
are employed to guarantee confidentiality and integrity during
communication.

C. System Architecture

To illustrate the deployment and implementation of the
IBDA platform in the industrial production process, as well
as the application of key security and privacy technologies in
the platform, we propose a system architecture for privacy-
preserving and secure IBDA platform, as shown in Fig. 5.
This architecture includes four layers: device layer, edge
layer, enterprise layer, and industry chain layer. It covers the
collection, storage, analytics, sharing, and trading of IBD.
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1) The device layer serves as a significant data source for
the IBDA platform and must support the collection of data
from a wide range of industrial control field devices with
complex protocols. This includes the collection of massive,
real-time/batch, structured/unstructured, and sequential/non-
sequential data. The device layer also provides basic data pre-
processing operations such as data cleaning, data integration,
and data conversion.

2) The edge layer deploys monitoring and control systems
that directly interact with industrial control field devices, as
well as communication, computing, and storage infrastructure.
The edge layer provides edge-side data storage capability
for industrial production fields and supports high-concurrency,
high-throughput, and high-performance data storage.

3) The enterprise layer deploys various information sys-
tems, distributed databases, and enterprise-level private cloud
platforms of industrial enterprises. The enterprise information
system is responsible for internal management functions such
as supply chain management, product life cycle management,
and customer relationship management. Distributed databases
support the local storage of IBD within enterprises and enable
secure and controllable autonomous management. Enterprise
private cloud platforms perform intelligent data analytics and
data sharing within enterprises to drive intelligent develop-
ment. At the same time, these platforms also participate in
industry-level DS&T and use enterprise local data to partici-
pate in the construction of industry-level intelligent analytics
models under the framework of secure FL.

4) The industry chain layer deploys industry-level public
cloud platform, which optimizes industrial resource allocation

and creates a creative industrial ecology through data analytics,
sharing, and trading between enterprises. Data analytics is
carried out based on the secure FL framework, allowing all
enterprises to cooperate to complete the ML model training
task of the data analytics sponsor. The parameters and model
exchange during model training are realized based on the
industry-level blockchain system. DS&T within the indus-
try chain are also carried out based on the industry-level
blockchain system, with smart contracts utilized to complete
DS&T recording.

V. KEY TECHNOLOGIES

A. IBD Fusion and Analytics Methods

The multi-source heterogeneous IBD representation method,
the multi-modal fusion analytics method, and the distributed
elastic computing method are presented in this section.

1) Multi-source Heterogeneous IBD Representation
Method: The representation of multi-source heterogeneous
IBD includes single modal IBD representation and multi-
modal IBD joint representation.

a) Single Modal IBD Representation Method Based on
Multi-scale Deep Model: Industrial data comes in many forms,
but most industrial production data has either temporal or
spatial attributes. By observing this data at multiple temporal
and spatial scales, we can uncover data patterns at different
levels to improve the accuracy of downstream data analytics.
In our previous work, we proposed extracting multi-scale tem-
poral features through wavelet analysis and fusing multi-scale
features through attention mechanisms for temporal data[118].
For spatial data, we proposed using Convolutional Neural
Networks (CNN) to obtain multi-scale spatial features[119].
And in [120], we proposed a nested attention mechanism for
multi-scale image information fusion, which can be further
extended to general spatio-temporal data.

For more general industrial data D = {ti, (xi, yi), ai},
with both temporal and spatial attributes, we suggest using a
multi-scale deep model for joint modeling of spatio-temporal
information. Among them, ti represents time, (xi, yi) is a two-
dimensional spatial coordinate, ai represents the specific mea-
surement value at time ti at position (xi, yi). Spatio-temporal
data is expressed as a snapshot sequence after continuous time
is discretized according to a specific temporal scale. The data
value at a particular spatial location on the snapshot is taken as
the average of observations at adjacent times at that location.
The analogy can be made that each snapshot corresponds to
a single frame of an image, while multiple snapshots along
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the timeline are equivalent to consecutive frames in a video.
Therefore, multiple layers of CNN can be used to obtain
depth features at multiple spatial scales for each snapshot,
with the resulting feature vector input into LSTM, forming
a typical CNN+LSTM architecture. To increase the model’s
sensitivity to spatial position, precise position information,
such as normalized longitude and latitude, can be embedded in
each grid involved in the convolution, and a position-sensitive
pooling algorithm can be used.

To extract depth features from multiple temporal scales,
the time interval between snapshots can be adjusted to obtain
spatio-temporal sequences at different temporal scales. Depth
features at different spatial scales can be extracted using CNN.
After obtaining spatio-temporal features at different scales of a
single modal data, the multi-scale features are fused through a
nested attention mechanism. The complete steps of this method
are as follows:

Step 1: Discretize continuous spatio-temporal data into time
snapshot sequences {Dt} at a certain temporal scale t;

Step 2: Obtain spatio-temporal data sequences {Dt,s} by
sampling on each time snapshot at a certain spatial scale s;

Step 3: Extract the depth feature ft,s,j of {Dt,s} using
CNN-LSTM model. ft,s,j represents the j-th feature at the
temporal scale t and spatial scale s;

Step 4: Extract the depth feature set F at multiple spatio-
temporal scales by adjusting t and s:

F = {ft,s,j |t ∈ T, s ∈ Ω, j ∈ Z+}, (1)

where T is the set of temporal scales, Ω is the set of spatial
scales, and Z+ is the set of positive integers;

Step 5: Use nested attention mechanism for spatial feature
fusion at the same temporal scale:

f
′

t,s = Attention(f
′

t,s−1, ft,s)(1 < s ≤ |Ω|); (2)

Step 6: Obtain spatial fusion feature at each temporal scale:

F
′

t = f
′

t,|Ω|; (3)

Step 7: Use nested attention mechanism for multi-scale
temporal feature fusion along the timeline:

F
′′

t = Attention(F
′′

t−1, F
′

t )(1 < t ≤ |T |); (4)

Step 8: Finally, the spatio-temporal fusion feature is ob-
tained:

F
′′′

= F
′′

|T |. (5)
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b) Joint Representation Method for Multi-modal IBD
Based on Multi-scale Heterogeneous Graph Model: On the
basis of multi-scale depth features of single-modal industrial
data, it is necessary to further reveal correlation features
between multi-modal data. In our previous study, we proposed
a heterogeneous graph embedding algorithm based on hetero-
geneous random walk [121] and a multi-scale homogeneous
graph representation method based on the ant colony algo-
rithm [122]. Heterogeneous graphs effectively preserve the
association information between multiple entities, allowing for
effective mining of deep relationships within the heteroge-
neous graph structure through heterogeneous random walk.
This approach is well-suited for association feature mining in
multi-modal IBD. Additionally, the graph embedding method
based on ant colony accurately captures the hierarchical clus-
tering structure of the graph and generates proper multi-level
embedding vectors for nodes. By integrating and optimizing
these two approaches and extending them to the scenario of
heterogeneous graphs in IBD, we propose a joint represen-
tation method for multi-modal IBD based on a multi-scale
heterogeneous graph model.

Fig. 6 is a schematic diagram of this method, which includes
the following four steps:

Step 1: Feature extraction: The multi-scale fusion features
of the original data are obtained through the method described
above. Based on the extracted features, we define four types
of association between data sources:

• Spatio-temporal relation. The data source is within a
similar range in terms of both space and time.

• Logical relation. There is a relationship of logical depen-
dency between data sources.

• Entity relation. Specific entities establish indirect rela-
tionships between data sources.

• Statistical relation. There is a statistical correlation be-
tween data sources.

Step 2: Heterogeneous graph construction: The hetero-
geneous graph is constructed among different data sources,
with vertices representing specific data sources and edges
representing the above associations between data sources.

Step 3: Heterogeneous graph embedding: For heteroge-
neous graphs, we suggest using the multi-scale ant colony
algorithm to obtain a multi-scale graph pyramid. First, the
ants walk randomly on the heterogeneous map and release
pheromones. When an ant passes through the same node, it
means that a loop in the graph is detected. Each time the ant
detects a loop, it stops walking and releases pheromones on
the edges of the loop as follows:

∆ρij =
1

length(loop)
, (6)

where ρij represents the amount of pheromone released, and
length(loop) represents the length of the loop. Every time an
ant walks, the probability of walking from any vertex ui to uj

is defined as:

P (ui → uj) =
Wijρ

α
ij∑

k Wikραik
, (7)

where Wij represents the weight of the connecting edge, ρij
is the pheromone, and α is a hyper-parameter. The pheromone
concentration on the edges of the heterogeneous graph reflects
the closeness of the relationship between the vertices. After
performing random walks with multiple ants, the edges with
higher pheromone accumulation indicate that the vertices they
connect form shorter loops, implying a stronger association.
We can use this pheromone information to identify and merge
related vertices, resulting in a simplified, heterogeneous graph.
By repeating this process, we can construct a graph pyramid
consisting of multiple heterogeneous graphs at different scales.

Step 4: Heterogeneous graph collapse: The graph em-
bedding optimization method is applied to different subgraphs
at different scales to obtain the embedding representations
of each vertex. Then, the joint representation of the graph
structure of each data source is obtained by concatenating
the embedding representations of different subgraphs and
performing PCA dimension reduction. The joint representa-
tion preserves the inherent data features of each source and
integrates the association features of multi-source data. This
provides a foundation for deep association analysis and joint
deep reasoning of multi-source industrial data.

2) Domain Adaptive and Interpretable Multi-modal Fusion
Intelligent Analytics Method: Domain adaptation is a common
problem in IBD intelligent analytics models due to different
application scenarios in specific industrial practices. When a
model trained on the training set is transferred to a target
industrial scene for actual deployment and use, the actual data
feature distribution in the scene often differs significantly from
the training set due to factors such as environment, equipment,
and human behavior, resulting in decreased model perfor-
mance. Artificial intelligence applications in industrial scenar-
ios are often closely related to industrial production decision-
making. So, studying model interpretability can make their
behavior more transparent and trustworthy, helping decision-
makers understand the model’s results and influencing factors
and avoiding potential decision-making risks. Fig. 7 shows
a suggested domain adaptive and interpretable multi-modal
fusion intelligent analytics method. Based on reliability mea-
surement, dynamic weighted fusion of multi-modal IBD is
performed, followed by incremental optimization of the model
using an unsupervised incremental optimization method based
on multi-modal differentiated learning with unlabeled data
to enhance domain adaptation. Finally, within a prototype-
based self-inductive learning framework, the logical rules
of prototype combination are summarized and induced to
generate decisions with strong explanatory power.

a) Multi-modal Data Fusion Method Based on Reliability
Measurement: In our previous work [42], we proposed a
reliability measurement method based on a single prototype
to address the domain adaptation problem, and enhanced the
domain adaptation capability of the fusion visual classification
model on multi-modal datasets. We extend this method to
multi-modal industrial data scenarios, and propose to measure
the model’s generalization ability for different modal data in
the target scenarios based on prototypes, as shown in Fig. 7.

A prototype training task is introduced during pre-training
on the training set, and the feature vector is mapped to the
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Fig. 7. Schematic diagram of a domain adaptive and interpretable multi-modal fusion intelligent analytics method.

low-dimensional prototype space using a prototype mapper.
Random prototype vectors are assigned to each category in the
prototype space, with the prototype vector of each category
brought close to the sample vector of the same class by
minimizing prototype contrast learning loss Lc.

Lc = −
∑
q

log(
exp(q ·Wm,i/τ)∑C
k exp(q ·Wk,j/τ)

), (8)

where q represents the vector of any sample. m represents the
class to which q belongs. Wk,j represents the j-th prototype
vector of the k-th class, randomly selected from the prototype
vectors of the k-th class. Wm,i represents the vector randomly
selected from the prototype vectors of the m class, which is
a positive sample. τ stands for temperature coefficient and
is used to adjust the contrastive learning intensity of positive
and negative samples. By combining Lc and the downstream
learning task loss Lp, we obtain the following loss function:

L = Lp + λLc, (9)

where λ is the hyper-parameter that balances the downstream
task and the prototype contrastive learning task. By minimiz-
ing the joint learning loss L on the training set, we can obtain
the prototype vector set {Wk,j} that represents the typical
sample features of each class k in the training set, while
optimizing the feature extractor for downstream tasks.

When a trained classifier is transferred to a target scene,
a prototype-based reliability measurement method is used to
assess the model’s domain adaptation. Specifically, the model’s
adaptation ability on a test sample is determined by comparing
the difference between the feature vector and the prototype
vector of the test sample. For a given sample x, if a classifier
of a certain mode determines that the sample belongs to class
m, then the reliability measurement function of this decision
is defined as follows:

R(x,m) = max
j

a(κ(x,Wm,j)), (10)

where, Wm,j represents the j-th prototype vector of the
classifier in the class m. κ stands for kernel function and is
used to measure the similarity between sample and prototype
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vector. Some typical kernel functions available include Gaus-
sian kernel, exponential kernel, inner-product kernel, etc.

Based on reliability measurement, the sub-model output
decisions of each mode are weighted and fused according to
their reliability measurements through late fusion, resulting in
the final fusion decision:

Ŷ =

∑T
t=1 R

(t)(x, Y (t)) · Y (t)∑T
t=1 R

(t)(x, Y (t))
, (11)

where x is the input sample, Y (t) represents the classification
decision of the classifier of the t-th modality for x, and R(t)(·)
represents the reliability measure of the classifier’s decision.

b) Unsupervised Incremental Optimization Method
Based on Differentiated Learning: As an effective method
of incremental learning, curriculum learning can address the
problem of single-modal domain adaptation. In our previous
work [42], we extended curriculum learning to asynchronous
curriculum learning for multimodal data classification. To
further improve the adaptation of the multi-modal fusion
analytics model to different industrial scenarios, we suggest
using the multi-modal differentiated learning method for
unsupervised incremental optimization of the model, as
shown in Fig. 7. Firstly, sub-models with high reliability
are selected for each sample in the target scene based on
reliability measurement to obtain pseudo-labels, constructing a
training data pool in the target domain. Then, an asynchronous
curriculum learning mechanism is adopted, allowing different
sub-models to select samples from the training data pool for
training. The order of sample selection follows from easy
to difficult, with difficulty measured according to reliability.
Since different models have varying degrees of reliability on
different samples, different sub-models will have different
sample selection orders. This differentiated learning mode
greatly improves the model’s domain adaptation.

c) Prototype-based Self-induction Learning Framework:
Existing research results indicate that prototypes are an ef-
fective way to improve interpretability of models [123], and
that shallow classification models are more interpretable than
deep models [124]. To achieve interpretability of the fusion
analytics model, we can graft the shallow interpretation model
into the reliability measurement process. By iteratively opti-
mizing the fusion model and the interpretation model based
on reliability measurement, the interpretable decision rules can
be self-summarized at the same time as fusion reasoning. Our
proposed prototype based self-inductive learning framework is
shown in Fig. 7. We obtained prototype vectors of each mode
in the aforementioned reliability measurement learning task.
Each prototype vector represents a typical feature vector and
corresponds to specific data space semantics. We can explain
the prototype by combining experts’ prior knowledge. These
prototype vectors serve as basis vectors, spanning a multi-
modal prototype space. The sample feature vector of each
input is projected into the prototype space to obtain a low-
dimensional semantic vector. Furthermore, a shallow model
with strong interpretation is introduced, and the semantic
vector is used as input to fit the final output of the fusion ana-
lytics model. Optional shallow models include KNN, logistic

regression, and decision trees, with their output constituting
interpretable decision rules.

3) Distributed Elastic Computing Method for IBD: The
distributed elastic computing method for IBD comprises
three aspects: an adaptive distributed approximate computing
method for data elastic expansion, a hierarchical decoupling
resource scheduling mechanism for task elastic expansion, and
a pluggable intelligent component construction method for
elastic deployment.

The distributed elastic computing method for IBD comprises
three aspects: an adaptive distributed approximate computing
method for data elastic expansion, a hierarchical decoupling
resource scheduling mechanism for task elastic expansion, and
a pluggable intelligent component construction method for
elastic deployment.

a) Adaptive Distributed Approximate Computing
Method: Compared to traditional approximate computing
methods based on data synopses, the distributed approximate
computing method for IBD must better adapt to dynamic
streaming data due to IBD’s characteristics of strong
timing, multi-source heterogeneity, and massive dynamics.
We propose improving the adaptive ability of distributed
approximation algorithms in three ways:

• Data precision-aware adaptive adjustment. Each comput-
ing node uses non-uniform data synopses to conduct
real-time statistics on incoming data. Moreover, the node
adaptively adjusts the statistical accuracy of data synopses
in different data intervals based on the degree of conflict
(the number of data samples with the same approximate
value) to improve the approximation accuracy of overall
aggregation calculations.

• Task-aware adaptive adjustment. Create task-specific data
synopses pools for different downstream approximate
computing tasks, and perform adaptive elastic expansion
as the tasks expand.

• Device capability-aware adaptive adjustment. Computing
tasks are adaptively divided according to the computing
power of nodes, with stronger computing nodes being
assigned more tasks.
b) Hierarchical Decoupling Resource Scheduling Mech-

anism: IBD mining is a typical computation-intensive, delay-
sensitive and communication-intensive application. In a tradi-
tional centralized scheduler, task scheduling and state informa-
tion maintenance are coupled, with the global state of nodes
and tasks being maintained during task scheduling, leading to
a performance bottleneck.

We recommend using a hierarchical decoupling resource
scheduling mechanism to decouple a centralized scheduler into
a global state manager and a distributed scheduler. The global
state manager maintains the status of nodes and tasks, while
the distributed scheduler has two tiers: a global scheduler and
a local scheduler. To avoid overloading the global scheduler,
local tasks are scheduled locally first. When the local node is
overloaded or cannot meet task requirements, the tasks are sent
to the global scheduler for scheduling. The global scheduler
schedules tasks based on the global state. When the global
scheduler becomes a performance bottleneck, multiple copies
can be quickly instantiated, share state information through
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the global state manager. This allows for efficient and flexible
expansion of a distributed scheduling system in the face of
numerous IBD mining tasks.

c) Pluggable Intelligent Component Construction
Method: As deep learning continues to develop, the paradigm
of intelligent analytics methods is becoming increasingly
similar. The core demand for industrial intelligence upgrading
is to flexibly and effectively apply existing intelligent analytics
technologies to diversified IBD mining scenarios, providing
rapid secondary development and flexible deployment.

We recommend a pluggable intelligent component construc-
tion approach to facilitate the rapid integration and validation
of intelligent analytics models for IBD mining scenarios.
Firstly, according to different stages of intelligent analytics,
common algorithms are modularized into reusable general
components, including data preprocessing components, fea-
ture extraction components, downstream task components,
and joint optimization components. Corresponding component
interface specifications are formulated. Then, a component
intermediate description language and corresponding compiler
are designed to translate the component intermediate descrip-
tion language into an executable program. Finally, by imple-
menting a visual AI component repository, users can flexibly
combine different components in the repository through drag-
and-drop functionality. The composition between components
is translated into the component intermediate description lan-
guage and ultimately compiled into an executable model for
deployment in a distributed computing environment.

B. IBD Privacy and Security Protection Methods

In this section, we discuss the IBD sensitive attribute
identification method, the IBD privacy-preserving computing
method based on secure FL, and the hybrid access control
model.

1) IBD Sensitive Attribute Identification Method: Data
within the Industrial Internet exhibits varying levels of sen-
sitivity due to differences in industry, source, and generation
mode. As such, data storage and management require classifi-
cation and grading. A feasible approach involves utilizing in-
formation entropy to quantify the sensitivity of data attributes
and identifying sensitive attributes based on association rules
[125]. Fig. 8 shows the overall process of this method.

Information entropy quantifies the degree of disorder of an
attribute. A larger information entropy value indicates a higher
level of disorder in the attribute’s value. Maximum discrete
entropy measures the maximum uncertainty associated with
an attribute and represents the maximum effective information
that an attacker can obtain after accessing attribute data. Thus,
the sensitivity of an attribute can be determined by comparing
the difference between its maximum discrete entropy and its
information entropy. The sensitivity of the attribute Ai in IBD
can be defined as:

Si =
Hmax(Ai)−H(Ai)

Hmax(Ai)
, (12)

Xt ∈ RM×N×C , (13)

...A3A2A1

Cluster
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Calculate SViDataset

Mine association relationships

PSAiSAi

Suspected sensitive 
attribute set PSA

Sensitive attribute 
set SA

Non-sensitive 
attribute set PSA

Sensitive attribute 
set SA

Fig. 8. The process of sensitive attribute identification.

where Hmax(Ai) is the maximum discrete entropy of attribute
Ai, and H(Ai) is the information entropy of attribute Ai. Si

represents attribute sensitivity, Si ∈ (0, 1). The smaller the
value, the more sensitive the attribute is.

Upon quantifying the sensitivity of each attribute in a
dataset, potential sensitive attributes can be identified by
mining the association relationships between attributes. This
approach serves to prevent attackers from inferring sensitive
attributes from non-sensitive ones. According to the sensitivity
calculation, attributes of data samples are preliminarily divided
through cluster analysis to obtain sensitive attribute set SA
and suspected sensitive attribute set PSA. Then, the Apriori
algorithm is used to mine the association relationships between
SA and PSA in the dataset, and all strong association rules
are obtained. Further classification of the suspected sensitive
attribute set can be determined by the number of strong
association rules successfully established between SA and
PSA. Finally, all attributes of the sample can be divided into
sensitive attribute set SA and non-sensitive attribute set NSA.

2) Privacy-preserving Computing for IBD Based on Secure
FL: FL enables distributed modeling without revealing local
data, providing significant protection for local data privacy.
However, FL remains vulnerable to various privacy theft
attacks, including model inversion attacks, membership in-
ference attacks, adversarial training attacks, and poisoning
attacks. To enhance its security and privacy protection capa-
bilities, it is feasible to introduce technologies such as DP,
HE, TEE, SMPC, and blockchain into FL. The blockchain-
based secure FL framework (BCFL) is a current hot research
topic. Using blockchain systems can provide capabilities such
as secure model parameter exchange and verification, client
reputation management, training rewards and punishments,
and decentralization.

A secure FL framework based on TEE and blockchain
is shown in Fig. 9. This framework utilizes blockchain to
publish and retrieve data, as well as to provide a secure ex-
change of model parameters and updates between clients and
servers. The training process is recorded in a distributed ledger
for auditing and tracing purposes. Blockchain establishes an
infrastructure for all TEEs, offering reliable communication
channels. This architecture ensures that the plaintext param-
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Fig. 9. Secure FL framework.

eters of the model are always kept within the TEE during
local client training, providing defense against various model
privacy attacks. Typically, all computing tasks associated with
model training are performed within the TEE. If the client has
access to a GPU or hardware accelerators, linear operations
within the training task can be outsourced to the GPU,
accelerating linear matrix operations. The secure FL scheme
based on TEE and blockchain is as follows:

Step 1: The server-side TEE initializes the model to be
trained and completes identity authentication and key negoti-
ation with the TEEs of various federated clients through the
blockchain. Identity and authentication information are stored
on the chain.

Step 2: The server-side TEE encrypts the global model and
uploads it to the blockchain. The client downloads the latest
model parameters from the blockchain, and the TEE decrypts
the model.

Step 3: The client-side TEE loads their respective local
training datasets and performs forward and backward propaga-
tion computations within the TEE to obtain the model gradient.
During the training period, computationally intensive matrix
linear operations within the TEE can be outsourced to GPUs
through secret sharing protocols, accelerating model gradient
calculation.

Step 4: The client-side TEE executes FedAvg to update
local model parameters. The updated model parameters are
encrypted by the client-side TEE and stored in the blockchain.

Step 5: The server downloads model updates from the
blockchain and decrypts them within the TEE. It then aggre-
gates model parameters from all clients using FedAvg, updates
the global model, and uploads it onto the blockchain.

Step 6: Repeat Step 2-5 above until the global model
converges.

Table II shows some application scenarios of the proposed
secure FL framework in industry, as well as potential data,
clients, and servers.

3) Dynamic Trust Evaluation Based on Zero-trust and
Hybrid Access Control Model: In light of the complex data
access requirements in IBD sharing and trading scenarios, it is

suggested that dynamic trust evaluation of the subject, object,
and environment in access scenarios be conducted based on
the zero-trust concept. In conjunction with dynamic trust,
research into a hybrid role-attribute access control model is
recommended.

a) Dynamic Trust Evaluation Based on Zero-trust: In a
zero-trust system, there is no traditional boundary trust mecha-
nism, and no user, network or device is trusted by default. Each
data access behavior of the subject must undergo dynamic trust
evaluation, as shown in Fig. 10. Dynamic trust evaluation in
the IBD environment accepts multi-source security elements
from the subject, object and external environment. The subject
can only access the target object if the dynamic trust evaluation
results of the subject, object, and external environment meet
the requirements. In dynamic trust calculation, required secu-
rity elements are first collected and then cleaned, aggregated,
labeled, and classified. The trust model can then be built
by combining methods such as Bayesian probability analysis,
outlier detection, peer group analysis, and fuzzy hierarchical
analysis. Additionally, the trust value should be modified and
updated based on historical trust value, recommended trust
value of adjacent nodes, and trust feedback [126].

b) Hybrid Role-attribute Access Control Model: In the
Industrial Internet, complex and diverse data sharing require-
ments pose great challenges to the efficiency and security of
access control. Traditional access control models use static
rules, blocklists, and allowlists for one-time evaluation, which
can easily result in excessive authorization, data abuse, and
privacy disclosure in a big data environment. Introducing a
continuous trust evaluation mechanism into access control can
enable dynamic risk perception. The traditional role-based
authorization mechanism has the advantage of simplifying
management. Therefore, we suggest a hybrid role-attribute
access control model based on trust evaluation, as shown in
Fig. 11. This model adds subject attributes, object attributes,
and environmental attributes to the RBAC model and statically
defines relationships such as subject-role, role-permission,
and permission-object. In this access control model, the trust
level of the subject, object, and environment is treated as
attributes. Dynamic control of permissions is achieved through
continuous trust evaluation.

The hybrid access control model comprises the following
key components: attribute selection, subject-role assignment
and role-object assignment, dynamic trust evaluation, and
permission filtering.

1) Attribute selection. The hybrid access control model uses
dynamic and static attribute sets for role assignment,
trust evaluation, and permission filtering. The subject
attribute (SATT) includes the subject’s identity infor-
mation, historical trust, purpose, and other information
related to the subject type and state. The object at-
tribute (OATT) includes data type, industry, security
level, historical trust, and other information related to
object type and security requirements. The environment
attribute (EATT) includes information related to the
current access behavior and the environment state, such
as access time, network status, and the scenario of the
access request.
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TABLE II
APPLICATION SCENARIOS OF SECURE FL FRAMEWORK IN INDUSTRY

Industry Application Scenario Data Client Server

manufacturing fault detection and diagnosis
predictive maintenance
production forecast
quality control

production data
quality data
equipment data
supply chain data

factory
intelligent equipment

factory
manufacturer company
industry association

energy energy production forecast
energy consumption forecast
energy optimal scheduling

energy production data
energy consumption data
environment data

smart meter
energy service company
micro-grid controller

energy scheduling center
energy service company

transportation vehicle condition monitoring
driving behavior analysis
traffic signal control
navigation optimization

vehicle sensing data
road condition data

vehicle
road side unit

automobile manufacturer
transport sector

healthcare disease diagnosis
medicine development
chronic disease prediction
gene association analysis
health monitoring

medical data
health data
genetic data

home gateway
hospital
medical research institution

hospital
medical research institution

chemical reduce production risk
improve production efficiency

production data
equipment data

factory scientific research institution
factory

logistics path planning and optimization
improve transportation efficiency

road condition data
cargo information
vehicle sensing data

on board unit
vehicle

logistics company
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2) Subject-role assignment and role-object assignment.
Subject-role assignment refers to assigning roles to
subjects. A subject can only have the rights associated
with a role after being assigned to that role. Role-object
assignment refers to assigning objects (resources in the
system) to roles. A user represented by a role can only
access an object after the object is assigned to that
role. The establishment of subject-role and role-object
relations enables more flexible and convenient access
control.

3) Dynamic trust evaluation. The process of trust evalu-
ation, as shown in Fig. 10, is performed not only at
the initiation of the access request but also continuously
during the access. The results of each trust evaluation are
used to update the historical trust degree of the subject,
object, and environment.

4) Permission filtering. Permission filtering is the key to
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Fig. 12. The process of hybrid role-attribute access control.

achieving fine-grained access control. The restriction
condition cons(r, o, oatt, eatt) composed of each role r,
object o, object attribute oatt, and environment attribute
eatt is used to delete the permission assigned to the
subject. This process can be formalized as a binary
tree, where the leaf node represents each attribute in the
constraint, the intermediate node represents the and and
or relation, and the value of the root node determines
whether the constraint is satisfied. After permission
filtering, the final permission set adheres to the principle
of least privilege.

Fig. 12 shows the hybrid role-attribute access control pro-
cess.

C. Blockchain Supporting Secure and Efficient IBDA

The block structure, consensus algorithms, and multiple
smart contracts for secure FL and DS&T records are presented
in this section.

1) Scalable Block Structure for IBD: Blockchain tech-
nology has numerous applications in industrial scenarios,
including two significant applications closely related to IBDA:
secure FL and DS&T. We first analyze the demands of these
two applications for blockchain and then investigate suitable
scalable block structures.

a) Blockchain Demand Analysis for IBD: Since the cen-
tral server of a traditional FL system is susceptible to a single-
point failure, using a blockchain system to perform aggrega-
tion tasks on distributed clients can enhance the efficiency and
security of FL to some extent. However, it is difficult to store
massive amounts of IBD directly in the blockchain ledger.
A reasonable solution is to store original characteristic data
off-chain, while only storing high-level data retrieval, model
parameters, and other information in the blockchain.
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Fig. 13. Schematic diagram of scalable block structure.

In addition, data authentication, provenance, and auditing
are challenges faced by IBD sharing and trading. Currently,
data provenance and audit systems in the industry are heav-
ily centralized and opaque, undermining their credibility.
Blockchain system can use smart contracts to achieve stan-
dardized and automated DS&T recording, providing reliable
data provenance and audit functions for IBDA platforms.

b) Scalable Block Structure for IBDA: The differences in
the presentation methods of IBD result in varying tensor di-
mensions after data fusion and feature extraction. Additionally,
data indexing methods also differ. As a result, it is essential
to research a scalable block structure that can accommodate
diverse business scenarios. This will allow blockchain ledgers
to store various data and models in a unified data structure. A
scalable block structure for IBDA is proposed as a reference,
as shown in Fig. 13. The block header includes the block
number, previous block hash value, current block hash value,
and timestamp. It also contains two Merkle trees, Rooth and
Roots. Rooth stores the hash values of all data within the
block, serving as the basis for block validation and consensus.
And Roots is a Merkle tree composed of leaf nodes based on
the identifiers of block data and model records. This structure
can achieve more efficient heterogeneous data retrieval and
enhance data availability.

Each record in the block body uses the Key − Column
model. Similar to the Key − V alue model, the Key serves
as the unique entry point for searching for each data record.
The Column simulates the storage format of traditional tables
through multi-layer mapping, providing high scalability for
multi-group data. In our block structure, the Key field stores
the identifier of the data and model, which is the leaf node of
Roots. The Column field varies depending on content type.
Table III shows Column storage entries for key applications.
Specifically, for tensor data after data fusion and feature
extraction, it can be stored in the form of an n-dimensional
array or use data pointers to point to offline storage locations
to reduce storage overhead.
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TABLE III
EXAMPLE OF Column DATA STRUCTURE

Data type Storage items
data sharing records provider, requestor, operator,

operation time. . .
data trading records consumer, provider, trading amount,

trading time. . .
feature data (tensor form) n-dimensional array

key model parameters parameter type, parameter value...
decision results decision time, decision content...

... ...

2) Consensus Algorithms for FL and DS&T: The
blockchain system that supports FL must transmit key models
and parameters with high data throughput. DS&T recording
has high requirements for data reliability and supervision. As
a result, it is necessary to research consensus algorithms that
are tailored to meet the specific needs of different applications.

a) Efficient Hybrid Consensus Algorithm for FL: To
meet the high-throughput and high-efficiency requirements
of FL scenarios, a hybrid consensus mechanism based on
PoS and pipelined Byzantine Fault Tolerance (BFT) can be
adopted. The PoS consensus method is used to elect a spe-
cific committee responsible for sharding transactions in the
network. Within the committee, the pipelined BFT consensus
mechanism is run to generate blocks.

Committee election is based on the PoS consensus mecha-
nism. In FL scenarios, the stake of a node can be measured
based on the amount of data contributed, the quality of the
uploaded model updates, and the computational resources
consumed. Moreover, every node that completes model collab-
orative training receives an equity reward, increasing its weight
for entering the committee in the next round election. On the
other hand, a node will suffer severe penalties if it engages in
poison attacks, fails to authenticate, or experiences significant
delays. Since nodes within the committee can obtain account-
ing rights. This mechanism can motivate participants in FL to
participate more actively and honestly in model collaborative
training, thereby increasing their electoral weight.

The committee’s internal consensus algorithm is based on
the pipelined BFT mechanism, which is an improvement over
the Practical Byzantine Fault Tolerance (PBFT) algorithm.
With PBFT, each block must pass through three stages of
voting and information interaction between nodes. However,
the pipelined BFT mechanism processes voting for blocks in
a parallel manner. As illustrated in Fig. 14, the block Bn

proposal is confirmed if it receives more than 2/3 of the votes
after one round of voting. In the next round, the block Bn+1

proposal is included, along with the final confirmation vote
for block Bn. If the votes obtained in this round exceed 2/3,
block Bn is considered to have passed the Commit stage,
and block Bn+1 proposal advances to the Prepare stage. This
parallel pipelining approach can reduce latency and increase
throughput to meet FL requirements.

b) Reputation Proof Consensus Algorithm for DS&T:
The consensus mechanism based on reputation proof can meet
the high reliability requirements of DS&T records. Under
this mechanism, only nodes with a credit value greater than

×

Client

Node 0

Node 1

Node 2

Node 3

PrepreparePreprepare PreparePrepare CommitCommit

PreparePrepare CommitCommit PrepreparePreprepareRound n-1

Round n

Round n+1 PreparePrepare

Fig. 14. The pipelined BFT mechanism.

the system’s trust reference value are considered effective
traceability nodes and can participate in the system’s primary
node election. This mechanism motivates nodes to share
data and record transactions honestly and completely. If a
node attempts to undermine the reliability of on-chain data
by fabricating data or forking the blockchain, it will suffer
a reputation penalty. Furthermore, this node will be in an
untrusted position and face stronger supervision during data
auditing and tracing. When the node can prove that its credit
value in the current cycle is greater than the system’s trust
benchmark value α, it will enter the authority network through
voting. The remaining consensus process is similar to Proof of
Authority (PoA). The consensus mechanism mainly includes
the following processes.

1) Accounting node selection based on reputation proof. At
the start of each reputation cycle, each node generates an
empty block linked to the previous block, from which a
set of participants is derived. In each accounting round,
N nodes are randomly selected from the participant set
to serve as the basic equity representatives for the current
round. These nodes must have reputation values greater
than the reference value α.

2) Block broadcast and ledger update. Block broadcasting
and ledger updates are basically consistent with the
PoA consensus mechanism. The current accounting node
collects, verifies, and broadcasts the data to be packaged
within the current period, and each node verifies the
identity of the accounting node. The absolute leadership
of the accounting node in a single round effectively
reduces the possibility of blockchain forks. The election
of the accounting node is decentralized and regulated,
thus mitigating the risk of intra-cycle centralization and
preserving the decentralization of the overall consensus
mechanism.

3) Dynamic reputation adjustment. At the end of each
round of accounting, the reputation value needs to be
dynamically adjusted, including rewards, punishments
and centralized restrictions. The reputation value is
calculated as follows:

T i =
1

1 + e−α(
∑n−1

j=0 Pj−ρ∗
∑n−1

j=0 Nj)
, (14)

where, T i is the reputation value of node i after this
round of reputation evaluation; n is the total number
of accounting rounds in this reputation cycle; Pj , Nj ∈
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{0, 1} are normal voting and malicious voting in the j-
th round, respectively. ρ ∈ (0, 1) represents the penalty
intensity for malicious voting behavior. Moreover, to
prevent the reputation value from growing rapidly in
the early stages of the blockchain system and leading to
centralization, it is necessary to constrain the reputation
value by the decentralized weight parameter η. The rep-
utation value T i should satisfy the following condition:

T i < (1 + η)T i−1. (15)

3) Multiple Smart Contracts: On the blockchain system of
IBDA scenarios, smart contracts can provide automated model
preprocessing and transaction records and achieve trusted data
interaction. For the two specific applications of FL and DS&T,
it is necessary to study smart contracts that meet their security
and efficiency requirements. We present multiple smart con-
tracts that may be used on the IBDA platform, including but
not limited to data storage smart contract (DSSC), data sharing
smart contract (DHSC), data trading smart contract (DTSC),
federated aggregation smart contract (FASC), and incentive
smart contract (ISC).

1) DSSC: Using DSSC, data owners can submit data stor-
age requests to blockchain nodes, and DSSC generates
corresponding data blocks and data indexes for them
and rewards nodes for contributing storage resources
(see Alg. 1). The original data is encrypted, added with
a digital signature by the data owner, and uploaded to
the edge blockchain node, which audits the data using
the DataAudit() function. The edge node periodically
integrates the original data storage identities into the
data block and broadcasts it to other edge nodes for
verification. The storage proof process is performed by
the ProofStorage() function in the blockchain cluster,
and the storage resource reward is computed.

2) DHSC: DHSC provides data sharing audit, retrieval,
recording, and reward functions (see Alg. 2). Firstly,
the data user submits a data sharing request to the
blockchain cluster, including the purpose, scope, and
accuracy requirements of the requested data. Then, the
blockchain cluster verifies the legitimacy of the data
user’s identity and the sharing request using the Sharing-
Validate() function. If the verification is successful, the
DataRetrieval() function is used to retrieve the data that
satisfies the requirements in the blockchain and return
the data index array to the data user. Finally, all the data
sharing records are stored in the blockchain as blocks,
and the data provides are rewarded according to the size
of the shared data.

3) DTSC: DTSC implements the entire process of data
trading (see Alg. 3). Firstly, the initiator of data trading
submits a request that specifies the purpose, budget,
scope, and requirements of the desired data. Then, the
blockchain cluster verifies the legitimacy of the identity
and the request of the initiator using the TradingVal-
idate() function. If the verification is successful, the
DataRetrieval() function searches for the data that meets
the requirements in the blockchain and returns a list of
data owners. The TradingNegotiate() function negotiates

Algorithm 1 Data Storage Smart Contract (DSSC)
Input: raw data: raw data provided by the data owner
Output: data index: data index in blockchain; reward storage:

reward for the node providing storage resources
1: sig ←Signature(raw data);
2: encrypt data←Encypt(raw data);
3: Upload(encrypt data, sig);
4: DataAudit(encrypt data, sig);
5: data index←GeneBlock(encrypt data);
6: reward storage←ProofStorage();
7: return data index, reward storage;

Algorithm 2 Data Sharing Smart Contract (DHSC)
Input: request: data sharing request from the data user
Output: reward sharing: reward for the data provider;

data indexs: data indexs of all shared data in blockchain
1: val←SharingValidate(request);
2: if val then
3: data indexs←DataRetrieval(request);
4: RecordSharing();
5: reward sharing ←ProofSharing();
6: end if
7: return data indexs, reward sharing;

Algorithm 3 Data Trading Smart Contract (DTSC)
Input: request: data trading request from the data user
Output: data address: access address of raw data

1: val←TradingValidate(request);
2: if val then
3: data owners←DataRetrieval(request);
4: data address←TradingNegotiate(dataowners, request)
5: RecordTrading();
6: end if
7: return data address;

with the data owners and finalizes the data trading,
returning the access address of the original data. Finally,
the credentials of the data trading are stored in the
blockchain as blocks.

4) FASC: FASC performs on-chain aggregation of model
updates to generate an updated global model that can
be accessed by all participants (see Alg. 4). During
the global training round, FASC constantly retrieves
local updates uploaded by clients in the blockchain and
verifies their performance. When a sufficient number of
updates are available, the model aggregation is triggered
to generate a block of the new global model and publish
it in the blockchain.

5) ISC: In FL, all clients voluntarily contribute their data
and participate in model training. ISC incentivizes more
data owners to join FL and provides data and computing
resources (see Alg. 5). Firstly, the FL task initiator pub-
lishes its QoS requirements, such as accuracy require-
ments, number of devices required, dataset size required,
training budget, and training time. After each client
completes the training task within the training round, the
ProofData() and ProofComputation() functions calculate
the data rewards and computation rewards for the data
owner, respectively.

We summarize in Table IV the advantages, disadvantages,
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Algorithm 4 Federated Aggregate Smart Contract (FASC)
Input: global round: global traing rounds
Output: global model: new global model after aggregation

1: while round ≤ gloabl round do
2: local update←QueryLocalUpdate();
3: VerifyUpdate(local update);
4: local updats←Append(local update);
5: global model←Aggregate(local updates);
6: round++;
7: end while
8: return global model;

Algorithm 5 Incentive Smart Contract (ISC)
Input: qos req: QoS requirements issued by the initiator;

global round: global training rounds
Output: reward data: data reward for data owners;

reward comput: computing power reward for data owners
1: clients←Release(qos req);
2: while round ≤ gloabl round do
3: for client in clients do
4: client downloads the global model, trains local model,

and uploads local model update;
5: reward data←ProofData();
6: reward comput←ProofComputation();
7: end for
8: round++;
9: end while

10: return reward data, reward comput;

and applicability of the solutions for the three key technolo-
gies discussed above, along with their specific objectives for
addressing the three challenges mentioned in Section III.

VI. CONCLUSIONS

As the construction of the Industrial Internet progresses,
data-driven innovative application modes are gradually being
explored. IBD provides significant value at the enterprise,
social, and national levels through DS&T. However, there are
three major challenges that must be addressed immediately:
existing big data analytics methods cannot meet the new char-
acteristics of IBD; DS&T raise privacy and security concerns;
and the Industrial Internet environment lacks mutual trust. This
paper proposed a research framework for privacy-preserving
and secure IBDA and elaborated on the research proposals
and potential technologies from four perspectives: platform
architecture, data fusion and analytics methods, privacy and
security protection methods, and blockchain supporting IBDA.

• In terms of platform architecture, we proposed a function
model, a security architecture, and a system architecture
for the IBDA platform. The platform can support secure
access and storage of multi-source heterogeneous IBD,
multi-modal fusion and analytics, and privacy-preserving
and efficient sharing and trading. These provide a ref-
erence for constructing a privacy-preserving and secure
IBDA platform.

• In terms of data fusion and analytics, we first sug-
gested using a multi-scale heterogeneous graph model
to implement IBD joint representation and reveal the
inherent multi-granularity features of multi-modal IBD.
We then proposed using a prototype-based multi-modal

intelligence fusion analytics approach to improve domain
adaptation and interpretability. Finally, we discussed dis-
tributed elastic computing methods for data, task, and
model extension.

• In terms of data privacy and security protection, we first
recommended identifying the sensitive attributes of IBD
to support hierarchical classification of privacy protection.
We then proposed using a blockchain and TEE enhanced
secure FL framework for distributed, privacy-preserving
IBD modeling. Finally, referring to the concept of zero-
trust, we suggested using dynamic trust evaluation and
a role-attribute hybrid access control model to realize
secure data access in the Industrial Internet.

• In terms of blockchain, we first designed a scalable block
structure to meet the various data storage and retrieval
requirements of IBD scenarios. We then provided two
reference consensus algorithms for secure FL and DS&T.
Finally, we proposed multiple smart contracts to meet
the security and efficiency requirements of various IBDA
platform applications and discussed the content of key
smart contracts.

To the best of our knowledge, this paper is the first to
propose a research framework for privacy-preserving and
secure IBDA, addressing three challenges to secure and ef-
ficient IBDA. This work has guiding significance for IBDA
and platform construction and can benefit IBDA researchers
and industry practitioners by providing clear guidance for
constructing IBDA platforms in various industries, particularly
in terms of system architecture and technical solutions.
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