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Abstract

How to incrementally optimize a pre-trained classifier in an unlabeled target domain

is a core challenging problem of domain adaptation (DA) for many visual tasks, such

as Person Re-identification (re-ID). Most of the existing methods optimize the model

based on pseudo labels or similarity of instance pairs, but ignoring the diverse mani-

fold structures of unlabeled instances in the whole dataset. In this paper, we address

the importance of such structural information in domain adaptation, and propose a

Heterogeneous Graph driven Optimization scheme, namely H-GO, for structure based

unsupervised learning. In particular, H-GO builds a heterogeneous graph of unlabeled

images to consider the heterogeneous properties of images from various cameras with

varied visual styles. A heterogeneous affinity propagation method is further applied to

explore the graph based affinity between the instances which share similar manifold

structures. Finally, a heterogeneous affinity learning procedure is taken to optimize the

visual models by using the graph based affinity of instances. Comprehensive exper-

iments are conducted on three large-scale re-ID datasets, and the results demonstrate

the flexibility and the superior performance of H-GO than state-of-the-art unsupervised

domain adaptation algorithms.
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1. Introduction

As a popularly researched task of computer vision, person re-ID aims to retrieve

the image frames containing the same person from surveillance videos. Currently,

supervised re-ID algorithms [1, 2, 3] on labeled datasets have gained impressive per-

formance. However, as reported by the recent study [4], directly deploying a trained5

re-ID algorithm to an unknown unlabeled new camera network may often yield very

poor performance. How to effectively optimize the trained model based on the abun-

dant unlabeled data collected in the target domain is a quite challenging problem for

domain adaptation.

Recently, some unsupervised domain adaptation algorithms of person re-ID were10

proposed to incrementally optimize the cross-domain transferred model. As the widely

used techniques, some pseudo label based methods [5, 6, 7] were shown to be also

effective in this task. Specifically, the research of [5] conducted clustering on unla-

beled instances and assigned the pseudo label of each instance as its corresponding

cluster ID. Multi-Label [6] took another way to assign each instance with multiple la-15

bels by comparing the similarity between the instance and the labeled data of the source

domain. Tracklet [7] associated the successive image frames containing the same per-

son in a camera, and assigned them with the same label for semi-supervised learning.

Although these pseudo label based methods can provide definite supervised signal to

optimize the visual model, how to effectively reduce the noise of assigning pseudo la-20

bels is usually quite challenging. Distinct from the hard assignment of pseudo labels,

some similarity based ‘soft’ methods were proposed to optimize the model based on

the similarity between images. In particular, TFusion [4] used a fusion model to teach

the visual model with the comparison results between instances. ECN [8] optimized

the model by measuring each image with the exemplar memories of other images.25

None of above methods has considered the diverse topological structures of images

in the whole dataset, which can provide abundant deep insight of instances based on

structural context and can be used for better model optimization. As observed in [9],

the manifold structures are ubiquitous in person image datasets, due to the diversity of

the appearance in different camera views. As shown in Fig. 1(a) and 1(b), the instances30
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(a) (b) (c)

Figure 1: The t-SNE visualization of instance features generated by different visual models on Market-1501.

(a) ResNet pre-trained on ImageNet. (b) ResNet pre-trained on DukeMTMC-reID. (c) ResNet pre-trained

on DukeMTMC-reID and optimized on Market-1501 using H-GO.

belonging to the same class are distributed in some unpredictable manifold structures,

and thus have larger Euclidean distance than those belonging to different classes. In

this case, Euclidean distance cannot depict the relationship between images precisely,

which increases the difficulty to classify the instances correctly in the Euclidean space.

Furthermore, when transferring a model from the source domain to the target domain,35

the diversity of manifold structures of instances in different domain brings more un-

predictable situations to the transferred model to recognize the relationship between

instances correctly. As shown in Fig. 1(b), the transferred models that are pre-trained

in other datasets cannot group the instances tightly.

To tackle such problem, we propose a Heterogeneous Graph driven Optimization40

scheme, namely H-GO, to explore the deep relationships beneath the manifold struc-

tures of unlabeled instances and generate better visual representation for easier classifi-

cation. Specifically, H-GO models the relationship of the unlabeled images from varied

cameras as a heterogenous graph, and adopts a novel heterogeneous affinity propaga-

tion method to explore the structures related affinity between instances. Furthermore, a45

heterogeneous affinity learning procedure is proposed to iteratively optimize the visual

model to achieve better presentation of instances, as exemplified by Fig. 1(c).

The advantages of this study can be highlighted as follows:

(i) We are the first to model the structural affinity of unlabeled images as hetero-
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geneous graph and propose the heterogeneous affinity propagation method for incre-50

mental learning. The Heterogeneous Graph driven Optimization brings a new way to

effective domain adaptation.

(ii) While comparing with the pseudo label based methods [5] [6] [7], H-GO is

much softer by learning the heterogeneous affinity between instances instead of as-

signing hard labels. Meanwhile, comparing with the similarity based methods [4] [8],55

H-GO explores much deeper structural affinity of instances aided by the heteroge-

neous affinity learning procedure.

(iii) Comprehensive experiments are conducted on three benchmarks (i.e., Market-

1501, DukeMTMC-reID and MSMT17). The experimental results demonstrate the

superior performance of H-GO, and show its flexibility to be combined with other60

pseudo label based methods to significantly improve their performance.

2. Related Work

Unsupervised Person re-ID. Most of state-of-the-art person re-ID algorithms are

in a supervised manner, by relying on sufficient labeled person pairs across cameras[3,

2]. However, the performance of these models is observed to have a serious drop when65

we directly transfer the model to another unlabeled dataset. To solve the domain adap-

tation problem, several recent works [4, 10, 7] attempted to tackle this problem by using

the deep learning framework. Fan et al. [11] initialized the model in the source domain

and fine-tuned with the pseudo-labels assigned by the K-means clustering algorithm in

the target domain. Wang et al. [12] and Lin et al. [13] aligned the attributes of un-70

labeled data to labeled source data, and obtained an impressive improvement. Rather

than utilizing the visual domain only, Lv et al. [4] paid attention to integrating the

spatial-temporal information with visual features. Deng et al. [14], Wei et al. [15]

and Liu et al. [16] applied Generative Adversarial Networks [17] to reduce the domain

shift between different datasets. Zhong et al. [18, 8] proposed to address intra-domain75

variations of target domain with the help of camera style tansferred images. Most of the

above algorithms, however, measure the relationship between a pair of images based

on the similarity of their visual features, hence ignoring the global distribution and the
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topological structures of the images in the whole dataset.

Graph based Supervised Person re-ID. Graph is a very popular data structure to80

describe complex connections between instances. There were some attempts on incor-

porating graph into the task of person re-ID recently [19, 9, 20]. Loy et al. [19] for-

mulated Laplacian-based method to obtain manifold ranking results. Bai et al. [9] in-

vestigated the underlying manifold structures of images through affinity graph. Zhong

et al. [20] proposed the mutual K-NN encoding method and adopted the Jaccard dis-85

tance with original distance to obtain robust ranking results. All of these methods were

used as a post-processing step for person re-ID, which can not help improve the per-

formance of visual models. From another perspective, Shen et al. [21] proposed a

group-shuffling random walk network to leverage the affinity between gallery images

for supervised training. Comparing with these graph based methods, there are two dis-90

tinct features of H-GO proposed in this paper: 1) H-GO is designed for unsupervised

domain adaptation and is able to utilize the unlabeled data for incremental optimiza-

tion; 2) different from the homogenous graph based existing methods, H-GO models

the relationship of images as heterogeneous graph and applies a novel heterogeneous

affinity learning method for unsupervised learning.95

3. Heterogeneous Graph Driven Optimization

3.1. Preliminary

Person re-ID aims to retrieve the surveillance videos for the image frames which

contain the same person. The essence of re-ID is an image retrieval problem dedicated

to person recognition. Formally, each surveillance image containing a person is denot-100

ed as Ii, which is cropped from an image frame in a surveillance video. The ID of the

person in Ii is denoted as Γ(Ii). Given a query image Ii, person re-ID is to achieve the

image set: {Ik|Γ(Ik) = Γ(Ii), Ik ∈ Ω}. Here Ω is the surveillance image dataset.

3.2. Framework Overview

We propose a novel Heterogeneous Graph Driven Optimization scheme (H-GO) to105

perceive the manifold structures of unlabeled data for continuous optimization of the
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Figure 2: The framework of H-GO with four key steps:(1) Supervised learning in the source domain, where

the Identity Loss and Triplet Loss are defined in Eq.(1) and Eq.(2) respectively; (2) A heterogeneous graph

is built in the target domain; (3) A Heterogeneous Affinity Propagation procedure is applied on the hetero-

geneous graph to reveal the structural affinity between images; (4) The newly learned structural affinity of

images are fed into a Heterogeneous Affinity Learning algorithm to incrementally optimize the visual model.

The Graph Loss is defined in Eq. (12).

visual model. The overall framework of H-GO is shown in Fig. 2, which consists of

four main stages:

• (1): Supervised learning in the source domain. The deep visual model based

on ResNet-50 [22], which is trained in the labeled source dataset, is transferred110

to the target dataset to extract the visual features of images.

• (2): Heterogeneous graph building in the target domain. A heterogeneous

graph of unlabled images in the target domain is built by considering the hetero-

geneous affinity of images from various cameras with diverse visual styles.

• (3): Heterogeneous Affinity Propagation. A Heterogeneous Affinity Propa-115

gation procedure is applied on the heterogeneous graph to reveal the structural

affinity between images.

• (4): Heterogeneous Affinity Learning. The newly learned structural affinity of
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images are fed into a Heterogeneous Affinity Learning algorithm to incremen-

tally optimize the visual model.120

By iteratively running steps (2), (3) and (4), both of the heterogeneous graph and

visual model keep evolving iteratively based on the unlabeled data in the target domain.

In the following subsections, we detail the design and analysis of each step of our

proposed framework.

3.3. Supervised Learning in Source Domain125

Given the source data I(s)i and its one-hot encoding label Γ(I
(s)
i )), we adopt ResNet-

50 [22] together with a batch normalization layer (BN) [23] to extract the visual fea-

tures F(Ii, θ), as shown in Fig. 2. A fully connected layer (FC in Fig. 2) is applied

as the classifier, which is denoted as C(s), to process the visual feature and output the

probability of predicted identities. The whole network is optimized with respect to an

identity loss and a hard-batch triplet loss [24] as follows,

Lidentity = − 1

Ns

Ns∑
i=1

log(Pr(Γ(I
(s)
i )|C(s)(F(I

(s)
i , θ)))) (1)

Ltriplet =
1

Ns

Ns∑
i=1

max(0,m+ ||F(I
(s)
i , θ)−F(I

(s)
i,p , θ)||

−||F(I
(s)
i , θ)−F(I

(s)
i,n , θ)||)

(2)

Here Pr(Γ(I
(s)
i )|C(s)(F(I

(s)
i , θ))) indicates the probability predicted by the mod-

el. || · || is the L2-norm distance, I(s)i,p and I(s)i,n indicate the hardest positive and hardest

negative sample in each mini-batch for I(s)i , and m = 0.5 denotes the triplet distance

margin. By minimizing both the identity and triplet loss, the model can be optimized

to predict labels in the source dataset correctly. However, due to the visual diversity of130

different camera networks, the accuracy of the model usually declines seriously when

testing on the target domain. In the following subsections, we will describe how to

effectively utilize the abundant unlabeled data in the target domain to incrementally

optimize the model.
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3.4. Heterogeneous Graph Building135

As shown in Fig. 1(b), diverse manifold structures would cause poor performance

for transferred visual models, where the intra-class distance may be much larger than

inter-class distnce. How to make better use of the structural information of instances

in the target domain is the key of domain adaptation. Based on this observation, we

establish a heterogeneous graph of the unlabeled images in the target domain to model140

the global structure of the whole dataset. As shown in Fig. 2, the heterogeneous graph

is formally denoted as follows:

G =< V,E >

V = {Vi|0 < i ≤ C}

E = {Ei,j |0 < i, j ≤ C} (3)

Here V = {Vi|0 < i ≤ C} indicates the image set in the target domain, where

Vi is the subset of images from the camera i in the dataset. C is the total number of

the cameras. For each image Ii ∈ V , its visual feature vector is generated by the

transferred visual model and is denoted as vi. The affinity between any pair of images

Ii, Ij ∈ V is measured as follows:

Sij = exp(−||vi − vj ||
2

2σ2
)(σ > 0) (4)

Taking the form of the Gaussian kernel function aims to enhance the non-linear dis-

criminative ability of the affinity measurement.

E in Eq. (3) denotes the edge set of the graph G, and Ei,j indicates the subset of145

the edges between the image set Vi and Vj . Specifically, Ei,i indicates the connections

between the images from the same camera i. These edge sets are built in two stages.

Firstly, for any image It ∈ Vi from the camera i, we can rank the other images from the

same camera according to their affinity, and select the top ks ones to build the edges

in Ei,i. Secondly, for any image It ∈ Vi, we rank the other images in {Vj |j 6= i}150

according to their affinity and select the top kd ones to build the edges. These edges

form the cross-camrea edges {Ei,j |j 6= i}. In this way, a sparse K-NN heterogeneous

graph can be built, which preserves the important adjacent structural relationship of
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Algorithm 1 The Heterogeneous Affinity Learning Algorithm
Require: F(Ii, θ): the visual feature vector of Ii generated by the visual model F ; θ:

the parameters required to optimize; M: the Deep Affinity Matrix; α: the constant

learning rate; γ: the convergency condition; µ: the positive constant that controls

the rate of feature update.

Ensure: optimized θ∗.

1: function LEARNAFFINITY(θ, M)

2: Fk ← F(Ik, θ)(1 ≤ k ≤ |V |) //Extract the feature vector of each image

3: Calculate W (λ) based on M by Eq. (13)

4: for i = 1→ |V | do

5: Calculate L̃+
graph based on W (λ) by Eq. (15)

6: θ ← θ − α∂L̃
+
graph

∂θ //Optimize the parameter set θ.

7: Fi ← µFi + (1− µ)F(Ii, θ) //Update the feature vector

8: end for

9: θ∗ ← θ

10: end function

the images. Note that ks and kd are both positive constant, which are set to control the

sparsity of the graph.155

3.5. Heterogeneous Affinity Propagation

After achieving the Heterogeneous graph, in order to explore the graph structure

related affinity between instances, we present here a random walk based algorithm to

measure the affinity by the arrival probability of random walkers in the graph. However,

because of the diversity of visual styles in different cameras, the affinity Sij between160

different images is heterogeneous. The images coming from the same camera tend to

have larger affinity than those from different cameras. This heterogeneous property

makes traditional random walk quite biased to the local neighborhood of the images

from the same camera.

To echo on the above challenge, we propose a Heterogeneous Affinity Propagation

algorithm by considering both the visual affinity and the camera tags of the images.
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Specifically, starting from each node Ii, random walkers are initialized to walk along

the edges. The probability Pij of a walker at Ii to select each next hop Ij from its

neighbor is determined as follows:

Prij =
|{Ik|Ik ∈ N (Ii), Ik

⊙
Ij}|

|N (Ii)|
· Sij∑

Ik
⊙
Ij ,Ik∈N (Ii)

Sik
(5)

Eq. (5) means that the neighbors of Ii are firstly grouped according to their cam-165

era tags, and the probability to walk into a group is proportional to the size of the

group. N (Ii) is the neighbor set of Ii in the graph G. Ik
⊙
Ij means that Ik is taken

from the same camera as Ij . The transition probability is normalized in each group as
sij∑

Ik
⊙
Ij,Ik∈N(Ii)

sik
. By adopting this heterogeneous normalization, the side-effect of

the diversity between varied cameras can be erased smoothly and the long dependency170

of cross-camera images may have a good chance to be explored.

Based on Eq. (5), the transfer probability matrix M (0) ∈ R|V |×|V | of the graph is

set as: M (0)
i,j = Prij(1 ≤ i, j ≤ |V |). M (0) indicates the affinity between adjacent

nodes in the graph. Inspired by the process of manifold ranking [25], the affinity can

be propagated by random walk as:

M (1) = ωM (0)M (0) + (1− ω)M (0)

M (2) = ωM (1)M (0) + (1− ω)M (0)

. . .

M (t) = ωM (t−1)M (0) + (1− ω)M (0) (6)

where ω ∈ [0, 1] is the weight to control relative contributions between the affinity

update and the original affinity matrix. t denotes the tth affinity propagation. As

t→∞, we can have,

M (∞) = (1− ω)(I − ωM (0))−1M (0) (7)

where I is the identity matrices.

M (∞) indicates the affinity propagation matrix, where the element M (∞)
i,j denotes

the structural relationship between the images Ii and Ij . The ith row vector M (∞)
i

indicates the global structure context of the image Ii. Based on M (∞), a Structural
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Affinity Matrix M is proposed to measure the structure based affinity between images,

where each element Mi,j is defined as:

Mi,j = exp(−
||M (∞)

i −M (∞)
j ||2

2σ2
) (8)

Here M (∞)
i and M (∞)

j indicate the ith and jth rows of M (∞). Eq (8) also takes the

similar form of the Gaussian kernel function like Eq (4) to enhance the non-linear

discriminative ability of affinity measurement.175

The bigger value of Mi,j indicates that the two images share more similar structure

context and belongs to the same class with higher probability.

3.6. Heterogeneous Affinity Learning

After achieving the structure based affinity M learned from the graph, we propose

next a Heterogeneous Affinity Learning method to utilize the derived affinity to opti-

mize the deep visual model. The optimization goal is to pull closer the feature vectors

of the images which have larger structural affinity, and push those with smaller affinity

further apart. According to this objective, the basic loss function can be defined as the

cross entropy of the affinity distribution and the predicted similarity, as follows:

Lgraph = −
|V |∑
i=1

∑
Ij∈N(Ii)

Wij log(P(F(Ij , θ)|F(Ii, θ))) (9)

Here Wij is the normalized affinity shown below:

Wij =



Mij
max

Ik∈N(Ii)
(Mik) , j 6= i ∧ Ij ∈ N(Ii)

0, j 6= i ∧ Ij /∈ N(Ii)

1, j = i

(10)

Mij is the structural affinity defined in Eq. (8). N(Ii) indicates the collection of images

which have the highest structural affinity with Ii. In practical implementation, we180

rank the images according to the structural affinity with Ii, and select the top ka(ka >

0) images to form the set. The function F(Ii, θ) indicates the visual feature vector

generated by the visual modelF , which takes Ii as input and θ as its parameters needed

for optimization.
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The function P(F(Ij , θ)|F(Ii, θ)) in Eq. (9) defines the predicted probability that

Ii has the same identity with another image Ij :

P(F(Ij , θ)|F(Ii, θ)) =
exp(F(Ij , θ) · F(Ii, θ)/τ)∑

Ik∈N(Ii)
exp(F(Ik, θ) · F(Ii, θ)/τ)

(11)

Here, τ is a temperature parameter [26] that is designed to tune the softness of probabil-185

ity distribution over classes. By minimizing the loss Lgraph, the visual model may tend

to generate similar feature vectors of the images which have higher structural affinity.

Considering the heterogeneous property of the affinity measurement of the images

from various cameras with different visual styles, the optimization goal of Eq. (9) can

be further extended to consider the diversity of the cameras:

L+
graph = −

|V |∑
i=1

C∑
λ=1

∑
Ij∈N(Ii),Ij∈Vλ

W
(λ)
ij log(P(λ)(F(Ij , θ)|F(Ii, θ))) (12)

Here λ is the camera ID, and C is total number of cameras. Ij ∈ Vλ indicates that

the image Ij is captured from the camera λ. Eq. (12) groups the nodes according to

the camera ID, and measure the affinity in different groups independently. Specifically,

W (λ) is the group-related affinity measurement defined as:

W
(λ)
ij =



Mij
max

Ik∈N(Ii),Ik∈Vλ
(Mik) , j 6= i ∧ Ij ∈ N(Ii)

0, j 6= i ∧ Ij /∈ N(Ii)

1, j = i

(13)

Meanwhile, P(λ) is the extension of Eq. (11) by adding the camera specific normaliza-

tion:

P(λ)(F(Ij , θ)|F(Ii, θ)) =
exp(F(Ij , θ) · F(Ii, θ)/τ)∑

Ik∈N(Ii),Ik∈Vλ
exp(F(Ik, θ) · F(Ii, θ)/τ)

(14)

In practical implementation, the cost to optimize the parameter set θ by directly

minimizing L+
graph is very expensive, because the generated feature vector of each

image Ii is required to calculate the correlation with the vectors of a bunch of other190

images according to Eq. (12) and Eq. (14).
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Algorithm 2 Evolving of the Heterogeneous Graph
Require: F : the visual model; θ: the parameters required to optimize; tswitch: the

balance control parameter.

Ensure: optimized θ∗.

1: repeat

2: vi ← F(Ii, θ)(1 ≤ i ≤ |V |)

3: G =< V,E >← Heterogeneous Graph Building

4: M← Heterogeneous Affinity Propagation on G

5: for k = 1→ tswitch do

6: θ∗ ← LearnAffinity(θ,M) //Heterogeneous Affinity Learning

7: ∆θ ← θ∗ − θ

8: θ ← θ∗

9: end for

10: until (|∆θ| < γ)

11: θ∗ ← θ

Inspired by [8], we adopt an alternate optimization method to reduce the optimiza-

tion cost. The algorithm is presented in Algorithm 1. Specifically, we define an ap-

proximation form of L+
graph as follows:

L̃+
graph = −

|V |∑
i=1

C∑
λ=1

∑
Ij∈N(Ii),Ij∈Vλ

W
(λ)
ij · log(P(λ)(Fj |F(Ii, θ))) (15)

Here Fj means the visual feature of the image Ij . P(λ)(Fj |F(Ii, θ)) of Eq. 15 is

defined as:

P(λ)(Fj |F(Ii, θ)) =
exp(Fj · F(Ii, θ)/τ)∑

Ik∈N(Ii),Ik∈Vλ
exp(Fk · F(Ii, θ)/τ)

(16)

As shown in the Line 2 of Algorithm 1, the visual feature of each image is ex-

tracted at the beginning. Following Line 4 of Algorithm 1, for each input image Ii,195

we calculate the loss according to Eq. (15), which keeps the visual features of other

images as constant (Fj) and only uses the feature vector of Ii (i.e. F(Ii, θ)) to prop-

agate backward the gradient to optimize the parameter set θ (Line 5 of Algorithm 1).

13



After the optimization of θ, the visual feature Fi is recalculated according to Line 6

of Algorithm 1. While keeping most of the visual features as constant during gradient200

propagation, the computing cost can be greatly reduced for parameter optimization.

3.7. Evolving of the Heterogeneous Graph

After the visual model is optimized according to the Heterogeneous Affinity Learn-

ing algorithm (Algorithm 1), the updated model can be utilized to generate the visual

feature of each image and re-build the Heterogeneous Graph according to Section 3.4.205

As shown in Fig. 2, by running in an iterative manner, both the visual model and the

heterogeneous graph evolve alternately. The detail of algorithm is shown in Algorith-

m 2. The hyper-parameter tswitch in Line 5 is adopted to tune the strength of the

Heterogeneous Affinity Learning procedure in each iteration of evolution.

4. Experiments210

4.1. Dataset and Experiment Settings

Dataset. Our approach 1 is evaluated on three large-scale datasets: Market-1501

[27], DukeMTMC-reID [28, 29] and MSMT17 [15]. Specifically, Market-1501 con-

tains 12,936 training images, 3,368 query images and 19,732 gallery images, which

include 1,501 identities from 6 cameras. DukeMTMC-reID is collected from 8 cam-215

eras, and contains 16,522 training images, 2,228 query images and 17,661 gallery im-

ages. As the largest Person re-ID open dataset, MSMT17 contains 126,441 images

with 4,101 identities taken from 15 cameras in a campus. As the default configuration

following [15], 32,621 images are selected for training, while 11,659 query images and

82,161 gallery images are prepared for testing.220

Evaluation Metric. The performance is evaluated by the the Cumulative Match-

ing Characteristic (CMC) curve and mean Average Precison (mAP). The CMC scores

reflect the precision of the retrieval, while the mAP indicates the recall.

Implementation Details:

1Source Code: https://github.com/linshoa/H-GO
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Table 1: Comparison of variation models. Heter-G and Homo-G denotes the building of Heterogeneous

Graph and Homogenous Graph, respectively. Heter-AP and Homo-AP means Heterogeneous Affinity Prop-

agation and Homogenous Affinity Propagation, respectively. Lgraph and L+
graph are two different ways

for Heterogeneous Affinity Learning. Market-1501 and DukeMTMC-reID are abbreviate as ‘M’ and ‘D’,

respectively.

Components D→M M→ D

Heter-G Homo-G Heter-AP Homo-AP L+
graph Lgraph Rank-1 mAP Rank-1 mAP

0 7 7 7 7 7 7 59.1 28.7 45.1 27.5

1 7 3 7 7 7 3 66.2 38.0 48.3 31.6

2 3 7 7 7 7 3 81.0 51.3 65.8 44.8

3 7 3 7 7 3 7 79.8 51.0 66.0 44.8

4 3 7 7 7 3 7 80.9 51.1 66.1 45.0

5 7 3 7 3 7 3 71.7 42.0 53.9 35.5

6 7 3 3 7 7 3 73.5 43.1 55.9 37.3

7 7 3 7 3 3 7 84.4 56.8 70.7 51.5

8 7 3 3 7 3 7 85.8 58.4 70.5 51.1

9 3 7 7 3 7 3 84.1 53.3 72.7 54.0

10 3 7 3 7 7 3 83.6 54.0 74.1 55.3

11 3 7 7 3 3 7 85.0 57.6 71.1 51.6

12 3 7 3 7 3 7 85.0 57.6 71.5 52.0

• Supervised learning in the source domain. We pre-trained the backbone on225

ImageNet [30]. Adam optimizer is selected and the mini-batch size is set as 64

in training. We train the backbone with the learning rate of 0.00035 in total 80

epochs.

• Training with H-GO. During training, the input images are resized as 256 ×

128 with the data augmentation of random cropping, flipping, color jittering. We230

use Adam optimizer with a mini-batch size of 64 for target data. We train the

visual model for 8 epochs with the learning rate of 0.00035. The wight ω in

Eq. (7) and the hyper-parameter of σ in Eq. (4) are empirically set as 0.99 and 1,

respectively. The temperature parameter (τ in Eq. (11)) is set as 0.05. Moreover,

with the help of grid search, ks, kd, ka and tswitch are set as 2, 4, 14 and 2,235

respectively. All experiments are conducted on one GTX 1080Ti GPU with 80

CPU cores, 128G memory.
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4.2. Ablation Studies

In this subsection, a series of ablation studies are given to demonstrate the effec-

tiveness of each major component of H-GO on the datasets Market-1501 [27] and240

DukeMTMC-reID [28]. The comparison results are shown in Table 1. The baseline

model is shown as 0.

Effectiveness of the Heterogeneous Graph. Without the Heterogeneous Graph

based optimization, the baseline model (0 in Table 1) shows extremely poor perfor-

mance, which is transferred from the source dataset to the target domain without any in-245

cremental learning. Specially, with optimization, the performance is further improved

when comparing the model 0 with model 2. For instance, on DukeMTMC-reID, the

mAP have raised from 27.5% to 44.8%(+17.3%). Moreover, we also compare H-GO

with the variation model using the Homogenous Graph (namely Homo-G in Table 1),

which selects the top-k affinity from all possible pairs of images without distinguish-250

ing from the same or different cameras. It can be observed that the mAP is improved

by +13.2% on DukeMTMC-reID when comparing the Heterogeneous Graph in model

2 with the Homogenous Graph in model 1. This demonstrates the effectiveness of the

Heterogeneous Graph. Due to the diversity of visual styles in different cameras, the im-

ages coming from the same camera tend to have larger affinity than cross-camera ones.255

Thus, in the Homogenous Graph, few cross-camera edges can be built and there is

no enough cross-camera relationship which is critical for person re-ID can be learned

to optimize the visual model. This is the reason why considering the heterogeneous

property of the graph is important in H-GO.

Effectiveness of Heterogeneous Affinity Propagation. We also make variant mod-260

el with the heterogeneous affinity propagation as shown as model 1, model 5 and mod-

el 6 in Table 1. When adding this component in model 6, the performance is further

improved comparing with model 1. For instance, on Market-1501, the mAP has sig-

nificantly raised from 38.0% to 43.1%(+5.1%). What is more, drops are observed

when we replace the component of heterogeneous affinity propagation by homogenous265

affinity propagation in model 5, e.g., the mAP drops from 37.3% to 35.5%(-1.8%) on

DukeMTMC-reID. This shows the effectiveness of infering the structure related deep

affinity between instances.
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Figure 3: Training time and rank-1 accuracy of the H-GO models with different parameter tswitch. Market

and Duke donotes Market-1501 and DukeMTMC-reID, respectively.

Table 2: Performance evaluation of our proposed H-GO with different affinity measure methods in Eq. 4 and

Eq. 8.

Affinity Measure Methods
DukeMTMC→Market Market→ DukeMTMC

Rank-1 mAP Rank-1 mAP

Cosine-similarity 76.5 46.2 66.6 46.6

Gaussian kernel function 85.0 57.6 71.5 52.0

Effectiveness of Heterogeneous Affinity Learning. There are two kinds of Hetero-

geneous Affinity Learning methods proposed in Section 3.6: the basic version which270

takes Lgraph (Eq. (9)) as the loss function, and the advanced model with L+
graph (E-

q. (12)) which considers the heterogeneous properties of the images taken from varied

cameras. It can be observed from Table 1 that L+
graph usually works much better than

Lgraph, especially in the cases based on homogenous graph by comparing the follow-

ing pairs of models: (1,3), (5,7), and (5,8). However L+
graph works weaker than Lgraph275

by comparing model 10 and 12 on DukeMTMC-reID, since the heterogeneous property

of the graph has been considered in graph building and affiniy propagation.

Effectiveness of Gaussian kernel function. We also make ablation studies to re-

place the Gaussian kernel function in Eq. 4 and Eq. 8 with traditional cosine-similarity,

which can be seen in Table 2. It is clear that Gaussian kernel function performances280

better than traditional cosine-similarity, since it enhances the non-linear discriminative

ability during the procedure of affinity measurement.

Effectiveness of Heterogeneous Graph Evolving. As detailed in Algorithm 2, the
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Figure 4: Parameters analysis of ka on Market-1501 and DukeMTMC-reID.

Table 3: Performance evaluation with differtent values of τ in Eq. (16) on Market-1501 and DukeMTMC-

reID.

τ
DukeMTMC→Market Market→ DukeMTMC

Rank-1 mAP Rank-1 mAP

1.0 67.0 37.1 56.6 36.0

0.5 68.3 38.1 57.7 37.4

0.1 76.3 47.8 66.1 45.3

0.06 83.8 55.9 70.7 51.5

0.05 85.0 57.6 71.5 52.0

0.04 84.0 56.0 69.1 49.3

evolving of the Heterogeneous Graph and the visual model can be run in an iterative

manner. We analyze the configuration of tswitch which indicates the strength of the285

Heterogeneous Affinity Learning in each iteration of evolution. Fig. 3 shows the accu-

racy together with the training cost of different models with varied tswitch. It can be

observed that larger tswith may reduce the time consuming of training. This is because

the graph building is relatively costly, and increasing tswith in Algorithm 2 may de-

crease the frequency of graph building. On the other hand, increasing tswith may also290

decrease the performance of the model, which confirms the importance of the evolution

of the Heterogeneous Graph. In real deployment, tswitch can be configured according

to the tradeoff between the performance and training cost. We set tswitch = 2 by

default in the experiments, so that the training can be finished in around half an hour.
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Figure 5: Parameters analysis of ks and kd on Market-1501 and DukeMTMC-reID.

4.3. Parameter Analysis295

Temperature parameter τ analysis. The sensitivity to temperature fact τ can be

shown in Table 3. We can observe that the lower τ it is, the better results it will

produce for the task of upsupervised person re-ID, since it enlarge variance of various

probability over classes. However, extremely lower value may harm the model and be

overfitting with the data, e.g, τ = 0.04. In our experiments, we set τ = 0.05.300

Analysis of the graph parameters ks, kd and ka. The parameters ks and kd indi-

cate the number of same camera neighbors and different numbers in the graph build-

ing, respectively. ka indicates the heterogeneous affinity learning procedure. Fig. 5(a),

Fig. 5(b) and Fig. 4 show that the models can achieve the best performance when ks is

in the range of 2∼4, kd is in the range of 2∼4 and ka is in the range of 10∼15. Larger305

size of neighborhood may even decrease the performance, because setting less simi-

lar instances as close neighbors may bring more noise to the relationship exploration

procedure. In our experiments, we set ks = 2, kd = 4 and ka = 14.

4.4. Comparisons to State-of-the-Art

Table 4 compares H-GO with state-of-the-art unsupervised domain adaptation algo-310

rithms on Market-1501 and DukeMTMC-reID. The comparisons are categorized into

two groups: 1) pseudo label based methods which conduct clustering on unlabeled

instances and assign the pseudo label of each image as its corresponding cluster ID
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Table 4: Comparison with state-of-the-art unsupervised domain adaptation methods on Market-1501 (M) and

DukeMTMC-reID (D). AHC and SP indicates agglomerative hierarchical clustering and spectral clustering,

respectively.

-

Methods
D→M M→ D

Rank-1 mAP Rank-1 mAP

PUL[11] pseudo label based 45.5 20.5 30.0 16.4

TFusion[4] similarity based 63.2 21.6 57.1 19.4

HHL[18] similarity based 62.2 31.4 46.9 27.2

ATNet[16] similarity based 55.7 25.6 45.1 24.9

CamStyle[31] similarity based 58.8 27.4 48.4 25.1

UCDA-CCE[32] similarity based 60.4 30.9 47.7 31.0

PAUL[10] similarity based 66.7 36.8 56.1 35.7

ECN[8](w/o StarGAN[33]) similarity based 58.0 27.7 39.7 23.6

ECN[8] similarity based 75.1 43.0 63.3 40.4

PDA-Net[34] similarity based 75.2 47.6 63.2 45.1

PCB-PAST[35] pseudo label based 78.4 54.6 72.4 54.3

Tracklet[7] pseudo label based 85.3 65.2 71.7 50.7

MMT(DBSCAN)[36] pseudo label based 89.5 73.8 76.3 62.3

SpCL[37] pseudo label based 90.3 76.7 82.9 68.8

AHC+L+
graph pseudo label based 67.7 40.1 56.9 36.8

KMeans+L+
graph pseudo label based 70.9 44.7 54.0 35.7

SP[38]+L+
graph pseudo label based 73.0 47.4 53.7 34.6

DBSCAN[39]+L+
graph pseudo label based 75.2 44.3 61.5 42.3

H-GO (Heter-G+Heter-Ap+Lgraph) graph based 83.6 54.0 74.1 55.3

H-GO (Heter-G+Heter-Ap+L+
graph) graph based 85.0 57.6 71.5 52.0

H-GO+Tracklet[7] - 89.5 74.2 78.9 53.3

H-GO+MMT(DBSCAN)[36] - 92.3 80.5 87.9 70.2

H-GO+SpCL[37] - 90.4 77.9 82.8 69.1

on the unlabeled target domain, including PUL [11], PCB-PAST [35], Tracklet [7],

MMT(DBSCAN) [36] and SpCL[37]; 2) similarity based methods which are proposed315

to optimize the model by using the similarity between images, including TFusion [4],

HHL [18], ATNet [16], CamStyle [31], UCDA-CCE [32], PAUL [10], ECN [8] and

PDA-Net [34]. Additionally, in order to exploit the flexibility of our method, we also

use H-GO as pre-processing method to combine with other pseudo label based methods

to significantly improve their performance and obtain new advance. Specially, Tracklet320

[7]+H-GO means that the combinaton of H-GO and Tracklet, which is trained based

on an idea of independent per-camera identity annotation. H-GO+MMT(DBSCAN)
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[36] and H-GO+SpCL [37] means that we provide the H-GO pretrained model for

MMT(DBSCAN) [36] and SpCL [37], respectively.

As shown in Table 4, H-GO outperforms most existing methods by a large margin.325

Specially, we achieve 85.0% Rank-1 accuracy and 57.6% mAP on Market-1501, which

exceeds the state-of-the-art similarity based method PDA-Net [34] by 9.8% and 10.0%,

respectively. Furthermore, similar superior performance of H-GO can be observed on

DukeMTMC-reID.

Besides, to further compare the heterogenous graph based method with the clus-330

tering based pseudo label methods, we also implement some variant methods by re-

place the heterogeneous graph with the pseudo labels generated by traditional cluster-

ing methods, as shown in Table 4. In these models, the affinity between the images

with the same pseudo label is set to 1, and that of the images with different pseudo la-

bels is set to 0. It can be observed that variation models (e.g., DBSCAN[39]+L+
graph)335

can achieve comparable results state-of-the-art algorithms (e.g., ECN [8]), but their

performance is much worse than H-GO by a large margin. This shows the superior

performance of the heterogenous graph based model when compared with traditional

pseudo label based methods.

Furthermore, we also verify the effectiveness to combine H-GO with other pseudo340

label based methods. Table 4 shows that Tracklet [7]+H-GO surpass Tracklet [7] by

margins of 9.0% and 2.6% mAP on Market-1501 and DukeMTMC-reID. More impor-

tantly, we achieve state-of-the-art performances on both Market-1501 and DukeMTMC-

reID with H-GO+MMT(DBSCAN) [36]. The effectiveness of H-GO is because after

using the graph structure based affinity to optimize the model, the instances belonging345

to the same class are grouped more tightly as shown in Fig. 1(c). That means H-GO

can be a very useful pre-processing tool to help the models to generate more precise

pseudo labels.

We also evaluate H-GO on the MSMT17 dataset [15], one of the largest person

re-ID datasets up to now, to test the generalization ability of H-GO. It shows that,350

H-GO+MMT(DBSCAN) [36] advances all of the state-of-the-art methods to a new

level, e.g., 59.6% and 54.1% rank-1 accuracy on Duke-to-MSMT17 and Market-to-

MSMT17 respectively.
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Table 5: Performance evaluation on the large dataset MSMT17. (*) the implementation is based on the

authors’ code. ‘M’ indicates Market-1501 and ‘D’ indicates DukeMTMC-reID.

Methods
M→MSMT17 D→MSMT17

Rank-1 Rank-10 mAP Rank-1 Rank-10 mAP

PTGAN[15] 10.2 24.4 2.9 11.8 27.4 3.3

ECN[8] 25.3 42.1 8.5 30.2 46.8 10.2

Tracklet[7] 44.1 63.9 18.6 44.1 63.9 18.6

MMT(DBSCAN)[36] 50.1 69.3 24.0 52.9 71.3 25.1

SpCL[37] 51.6 69.7 25.4 53.1 70.5 26.5

SpCL∗[37] 48.4 66.5 23.6 48.8 66.7 23.4

H-GO (Heter-G+Heter-Ap+L+
graph) 25.1 41.2 9.3 36.2 53.1 13.6

H-GO (Heter-G+Heter-Ap+Lgraph) 29.1 44.3 11.0 41.4 58.1 16.2

H-GO (Homo-G+Heter-Ap+L+
graph) 34.4 51.4 13.9 42.4 59.9 17.4

H-GO+Tracklet[7] 47.7 66.4 21.8 52.4 71.2 24.0

H-GO+MMT(DBSCAN)[36] 54.1 72.4 28.0 59.6 76.5 31.2

H-GO+SpCL[37] 49.1 66.5 23.6 50.3 67.8 24.4

5. Conclusion

In this paper, we propose a novel Heterogeneous Graph driven Optimization scheme355

(H-GO) for structure based unsuperised learning. In particular, H-GO builds a hetero-

geneous graph of unlabeled images to consider the heterogeneous properties of images

from various cameras with varied visual styles. A heterogeneous affinity propagation

method is further applied to explore the graph based affinity between the instances

which share similar manifold structures. Finally, a heterogeneous affinity learning pro-360

cedure is taken to optimize the visual models by using the graph based affinity of in-

stances. Comprehensive experiments are conducted on three large-scale re-ID datasets,

and the results demonstrate the flexibility and the superior performance of H-GO than

state-of-the-art unsupervised domain adaptation algorithms. In the future, we will fur-

ther study how the diversity of visual styles affect the optimized parameter setting365

in H-GO, and thus be able to make the algorithm more self-adaptive to the dynamic

change in varied domains.
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